

Search for Heavy VV Resonances in Semi-Leptonic Final State

Zijun Xu Peking University On behalf of the CMS Collaboration

Boston Jet Physics Workshop 2014

Outline

- Introduction
 - $H \rightarrow WW \rightarrow Iv + fat-jet: CMS PAS HIG-13-008$
 - $X \rightarrow WW \rightarrow Iv + fat-jet: CMS PAS EXO-12-021$
 - $X \rightarrow ZZ \rightarrow II + fat-jet: CMS PAS EXO-12-022$ • $X \rightarrow VV \rightarrow Dijet: Petar's talk$
- Event Reconstruction and Selection
 - Leptonic W/Z;
 - Hadronic W/Z, V-Tagging CMS PAS JME-13-006 James's talk
- Analysis Strategy
- Systematic Uncertainties
- Statistical Interpretations
- Summary

Introduction(I)

- Heavy Higgs(600-1000GeV)
 - ∘ H→WW→lvqq'
 - BSM: a heavy electroweak singlet
 - A heavy Higgs and the 125GeV one complete unitarization; C¹² + C² = 1
 - The heavy Higgs has a non-SM-like decay modes;
 - generic in width and cross-section $\Gamma' = (C'^2/(1-BR_{new})) \times \Gamma_{SM}$ $\mu' = C'^2 \times (1 - BR_{new})$
- Bulk Graviton
 - $G \rightarrow WW \rightarrow lvqq'$ (800-2500GeV)
 - $G \rightarrow ZZ \rightarrow llqq$ ' (600-2500GeV)
 - Production process at LHC similar to SM Higgs decays preferentially to t, then W, Z and H

NB: Higgs is a wide resonance, while G is narrow;

Introduction(2)

- W/Z are highly boosted:
 - decay productions are very collimated in space.
- Jet Grooming:
 - Significantly improved jet mass
 - Remove constituents inside a fatjet for reducing soft process contaminant;
- Jet substructure:
 - Provide additional information for discriminating QCD-jet and V-jet;
 - N-subjettiness, mass drop, Qjet...

1/23/14, Boston

Leptonic W/Z

- W:
 - One good lepton; No additional loose ID lepton;
 - large MET;
 - $\circ W_{lep} pT > 200 GeV$
- Z:
 - Same flavor but opposite charge di-leptons;
 - M(II) in [70,110];
 - Z_{lep} pT > 80 GeV

More details in James's talk

Hadronic W/Z:V-Tagging(I)

- A high pT CA8 jet.
 - In WW analysis, need to be back-to-back with leptonic objects;
 - $V_{had} pT>200(80) GeV for W(Z)$
- Jet mass:
 - M(QCD-jet) ~ 0;
 - $M(V-jet) \sim M(V_{PDG});$
 - Main observable in analysis;
 - Improved by jet pruning: soft and large angle radiation removed; Especially for QCD-jet
 - [65,105]GeV for W;
 - [70,110]GeV for Z;

More details in James's talk

Hadronic W/Z:V-Tagging(2)

- N-subjettiness
 - Jet compatibility with Npronged substructure.
 - τ2/τ1 is the best
 performing single variable;

$$\tau_{N} = \frac{1}{d_{0}} \sum_{i} p_{T,i} \min\{(\Delta R_{1,i})^{\beta}, (\Delta R_{2,i})^{\beta}, ..., (\Delta R_{N,i})^{\beta}\}$$

 V-tagging: Jet Mass + N-subjettiness

CMS PAS JME-13-006

More details in Petar's talk

Hadronic W/Z: V-Tagging in TTbar sample

- TTbar selection:
 - W_{Lep}+W-Tagged jet+ B-Tagged jet
- Tag-And-Prob:
 - Fit samples passed and failed
 W-Tagging in Data and MC
 - Scale factor for W-tagger efficiency of real W-jet;
 - W-jet mass bias and resolution corrections

	data	MC	scale factor / shift
efficiency 200 <p_<265 gev<="" td=""><td></td><td></td><td>* 0.96 +- 0.08</td></p_<265>			* 0.96 +- 0.08
efficiency 265 <p_<600 gev<="" td=""><td></td><td></td><td>* 0.89 +- 0.10</td></p_<600>			* 0.89 +- 0.10
mass peak position	84.5 +- 0.4 GeV	83.4 +- 0.4 GeV	+1.1 +- 0.4 GeV
mass peak width	8.7 +- 0.6 GeV	7.5 +- 0.4 GeV	+16% +- 9%

Zijun Xu

CMS PAS HIG-13-008

CMS PAS EXO-12-022

Systematic Uncertainties

HWW: Signal + Background

Syst. uncertainty	sig, ggH	sig, VBF	W+jets	tť	single t	WW/WZ	
lumi	4.4%	4.4%	-	4.4%	4.4%	4.4%	
Higgs QCD scale	6.5% †	1.3% †	-	-	-	-	
Higgs PDF+ α_s	12.1% †	5.9% †	-	-	-	-	
Intf (sig/bkg)	10.0%	50.0%	-	-	-	-	
Bkg cross-section	-	-	-	-	30.0%	30.0%	
W+jets norm.	-	-	8%	-			
W-tagging	10.0%	10.0%	-	-	-	10.0%	
ti norm	-	-	-	6.0%	6.0%		
Jet mass/energy scale	2%	2%	-	2%	2%	2%	
W+jets shape	-	-	see Sec. 6	-	-	-	
b-tagging	2.5%	2.5%	-	-	2.5%	2.5%	
Trigger (e & µ)	1%	1%	-	-	1%	1%	
Selection Eff. (e & μ)	2%	2%	-	-	2%	2%	

XZZ: Signal normalization

Source	Value	Comment
Muons (trigger and ID)	5%	Tag-and-probe study
Electrons (trigger and ID)	$\sim 3\%$	Tag-and-probe study
Muon scale	2%	Scale and resolution of the muon
Electron scale	< 0.5%	Scale and resolution of the electron
Jet reconstruction	1%	JES uncert., JER uncert. negligible
Pile-up	0.5%	
Z-tagging	8% (1JHP)	From $t\bar{t}$ control sample,
	30% (1JLP)	anti-correlated between categ.
Proton PDFs	< 0.5%	PDF4LHC, acceptance only
Luminosity	4.4%	

Zijun Xu

CMS PAS HIG-13-008

SM and BSM Higgs Limits

No significant excess is observed:

- Exclude at I.I (4.I) times the SM Higgs cross-section for a mass of 600 (1000) GeV hypothesis.
- The typical upper limit on the σ 95% × BRWW ranges ٠ from ~60 to 400 fb when BRnew=0 and C'2 ranges from 0.3 to I.0.

1/23/14, Boston

CMS PAS EXO-12-21, EXO-12-022

No significant excess is observed:

- WW: upper limits at 95% CL on σ*BR(WW) are set in the range from 70 fb to 3 fb for masses between 0.8 and 2.5 TeV, respectively;
- ZZ: a lower mass limit M>710GeV for a bulk graviton with coupling k = 0.5

Dijet search goes to higher masses; Semi-leptonic search gives stronger limits;

Conclusion

- Search for X to VV in semi-leptonic final state has been performed with ~20fb⁻¹ data of p-p collisions at √s=8TeV from CMS;
- No Significant excess has been observed;
- Novel techniques for V-tagging are employed;
- Benchmark for future analysis at high mass regime.

Backup

Effect of W polarization

Effect of W polarization

Test performance vs.W polarization

Performance is slightly degraded in all cases for W_T w.r.t W_L . Mass drop seems to least sensitive to W polarization Polarization effects become more important at higher pT

Event Selection for EXOZZ

Summary of Selections

Selection	Value	Comments
Lepton selections		
Leading lepton $p_{\rm T}$ Subleading lepton $p_{\rm T}$ Subleading lepton $p_{\rm T}$ Electron η Electron fiducial Muon η	$p_{ m T} > 40~{ m GeV} \ p_{ m T} > 40~{ m GeV} \ p_{ m T} > 40~{ m GeV} \ p_{ m T} > 20~{ m GeV} \ \eta < 2.5 \ \eta _{ m SC} ~{ m out}~{ m of}~[1.4442,~1.566]~{ m range} \ \eta < 2.4$	Electrons and muons. For electrons. For muons. Avoid the ECAL gap.
$\begin{array}{c} & \\ & \\ \hline \\ & \\ \\ & \\ \\ & \\ \\ & \\ \\ \\ & \\ \\ \\ \\$	$p_{\rm T} > 30~{ m GeV}$	
Jet η	$ \eta < 2.4$	
Boson selections		
m_{LL} m_{JJ} (resolved case, signal) m_J (merged case, signal) m_{JJ} (resolved case, sideband) m_J (merged case, sideband) Leptonic Z $p_{\rm T}$	$\begin{array}{c} 70 < m_{LL} < 110 \; {\rm GeV} \\ 70 < m_{JJ} < 110 \; {\rm GeV} \\ 70 < m_J < 110 \; {\rm GeV} \\ m_{JJ} \; {\rm in \; range \; [60, 70] \cup [110, 130] \; {\rm GeV} } \\ m_J \; {\rm in \; range \; [50, 70] \; {\rm GeV} } \\ p_{\rm T} > 80 \; {\rm GeV} \end{array}$	When applying final V- tagging selection, only one candidate per event is retained. We pick the one with Z masses closest to PDG value.
Hadronic Z $p_{\rm T}$	$p_{ m T}>80~{ m GeV}$	
Diboson selections		
Diboson mass M_{ZZ} 2- to 1-subjettiness ratio (high purity) 2- to 1-subjettiness ratio (low purity)	$M_{ZZ} > 180 \; { m GeV}$ $ au_{21} < 0.50$ $0.50 \le au_{21} < 0.75$	

Event Selection for EXOWW

Event Selections :

- 1) High Boosted Leptonic W : $p_T^{Wlep} > 200 \, GeV$
- 2) High Boosted Hadronic W = CA8 hardest Jet: $p_T^{CA8} > 200 \, GeV$
- 3) pfMET > 40 (80) GeV for muon (electron) channel
- 4) Lepton pT > 50 (90) GeV for muon (electron) channel.
- 5) back to back topology : $\Delta R_{IJ} > \pi/2$ $\Delta \phi_{J,WLep} > 2.0$ $\Delta \phi_{J,MET} > 2.0$
- 6) **btag veto** : no btagged AK5 jets, with $p_T > 30 \, GeV$, according to CSV med. (Optimized to have the best Punzi's significance)

Analysis Strategy: G->WW

