

Tagging Quark/Gluon Initiated Jets at ATLAS

Boston Jets 2014

Maximilian Swiatlowski

21 January, 2014

History and Motivation

- Quark-initiated and gluon initiated jets have long been known to have different properties
	- Well measured at PETRA, SLAC, LEP, others
- Two papers from Schwartz and Gallicchio in 2011, along with previous efforts in ATLAS, led to a push for creating and commissioning a quark-gluon tagger at ATLAS
	- Theory paper [\(here\)](http://arxiv.org/abs/1106.3076) investigated the best variables to use to train a tagger, in parallel to our own efforts
- Many potential applications in searches for new physics and standard model measurements
	- Separate hadronically decaying bosons from gluon dominated backgrounds (diboson searches, Higgs, etc.), improve discrimination in dijet searches, monojet characterization, many more

Today's Talk

- Today, we are showing for the first time the full results of the 2011 ATLAS q/g tagger
- Results not yet publicly available: will be published in a paper (very) soon
	- **1** [Constructing of a Tagger](#page-4-0) [Variable Selection](#page-4-0) [Purified Samples](#page-8-0) [Defining the Likelihood](#page-11-0)

2 [Tagging Performance](#page-14-0) [Systematic Uncertainties](#page-14-0) [Overview of Performance](#page-16-0) [Angularities](#page-19-0)

Constructing a Tagger

Variable Selection

- Important to choose pileup robust variables: use only tracking
- Need strong performance across wide range of p_T : n_{trk} has best performance at highest, track width better at low
- EEC variables have good separation as well– but have systematic issues we will describe later
- • We use a likelihood combining

Template Methods

• Significant data/MC disagreement for the input variables required the use of a data-driven template technique

- Take percentages from MC, measure γ +jet and dijet in data: solve for quark and gluon distributions in data
- More information on method in \rightarrow [backup](#page-26-0))

Testing Method in MC

- MC-labeled distributions in γ +jet and dijets agree very well with templates derived in MC
	- Disagreeement at low p_T will be discussed at length soon
- • Gives us confidence that the algorithm is doing something sensible

Templates with Data

- But data disagrees with Pythia in n_{trk} , leading to worse separation than expected
- Track Width has better agreement, though not good at high p_T

SL AC

- Are the data templates correct? How can we test these derived shapes?
- Define topological/kinematic regions where jets are more likely to be quark-initiated or gluon-initiated
	- Trijet sample, with $\zeta = |\eta_3| |\eta_1| |\eta_2| < 0$ is gluon-like
	- $\gamma+2$ jet sample, with $\xi = \eta_{i \in \mathbb{1}} \times \eta_{\gamma} + \Delta R(j \in \mathbb{2}, \gamma) < 1$ is quark-like
	- See [arXiv:1104.1175](http://arxiv.org/abs/1104.1175) for more details
- • These regions have purity of \sim 90%– good regions for **validation of** templates!
	- Not enough statistics to derive 2D templates, but enough to be useful for validation

Pure Shapes: Quarks

• Shapes from topologically purified samples generally agree with extracted templates to 1 σ

Pure Shapes: Gluons

- Similar levels of agreement with gluon shapes
- **Completely independent** data samples verify our template shapes

Likelihood

• Define $L = q/(q + g)$ separately in data and MC

• Immediately can see that while **shapes are similar**, performance is much worse in data

Likelihood Output

- Significantly reduced performance in data
	- But enough to still make something useful!
- • We will define a tagger at 4 operating points: 0.3, 0.5, 0.7, and 0.9 quark efficiency

Tagging Performance

Systematic Uncertainties

- • Many different sources of error considered for the tagger:
	- **1** PDF variations– affect q/g fractions
	- \bullet γ purity- affects data input
	- **3** Heavy flavor shapes/fraction– affects MC inputs
	- \bullet Madgraph/Pythia fraction differences– affect q/g fractions
	- 5 Non-closure/ sample dependence– affects data inputs

Systematics Summary

- Here, show **breakdown of systematics** for 50% quark-like o.p.
- Sample dependence is by far the largest effect
	- Quarks/gluons from γ +jet do not look exactly like quarks/gluons from dijets (in both Pythia and Herwig)
	- Need to understand this effect to apply this tagger to other topologies
- • More operating points, and details on non-closure, in \leftrightarrow [backup](#page-29-0)

Overview of Performance

- • For measuring performance, we will show several different tests together:
	- Red points indicate performance of data tagger, tested on data templates
		- Red lines on those points indicate statistical uncertainties
	- Teal band indicates systematic uncertainties
	- Blue points indicate performance of pythia tagger, tested on pythia templates
	- Magenta points indicate performance of data tagger, tested on **pure** data samples

Gluon Efficiency vs. Quark Efficiency

- Purified samples show slightly worse gluon efficiency than data, but agreement within 1σ
- • Data shows worse performance than MC– generally greater than 1σ disagreement

Performance vs. Jet p_T

- Left shows 50% quark point, right shows 70%
- Results are consistent across p_T : purified samples measurement generally agree with data, but MC significantly overestimates performance
- \bullet Other operating points in \bullet [backup](#page-27-0)

Angularities

- New class of variables, called "Energy Correlation Angularities," described in [arXiv:1305.0007](http://arxiv.org/abs/1305.0007)
- Interestingly: possible to show that these variables contain maximum discriminatory power between q/g
- Defined with free parameter β :

$$
Ang = \frac{\sum_{i} \sum_{j} p_{\mathcal{T},i} p_{\mathcal{T},j} (\Delta R(i,j))^{\beta}}{(\sum p_{\mathcal{T},i})^2}
$$
(1)

• How does gluon efficiency change with β , and how large are the systematics?

Angularity Performance

- **NB**: 1 Gluon Efficiency shown
- Significant differences between data and MC performance, and systematics are larger than for the likelihood
	- Sample dependence is very large for angularities, at least with $\beta < 1$
- • $\beta = 0.2$ is slightly optimal in MC, but difficult to tell trend in data

Conclusions

- Much effort has gone into studying the properties of quark and gluon initiated jets (see existing conf note, [ATLAS-CONF-2012-138\)](https://cdsweb.cern.ch/record/1480629/files/ATLAS-CONF-2012-138.pdf)
- Since then, work has focused on deriving a tagger, calibrating it to data, and determining the systematics
- Data/MC disagreements make tagger derivation difficult– use templates from data
- Systematics need to be carefully assessed– large sample dependencies observed
	- Angularities in particular seem sensitive to these effects
- • Final paper, with all these results and more, should be out soon!

Thank You For Your Attention!

Backup

Defining Quark/Gluon Initiated Jets

- Need to use a consistent definition across generators for defining a quark/gluon iniiated jet
- • We use: "a jet is defined by the flavor of the highest energy parton inside the jet"
	- This labelling is studied in Madgraph to determine how often it matches the Matrix Element: $95 - 99\%$ of the time

Extracting Templates

- • Goal: to better understand quark/gluon shapes in data, extrapolate data to 100% purity with fractions from MC
- Ideally, solve for q/g on bin-per-bin basis from:
	- $h^{\gamma+j} = P_O^{\gamma+j}$ $q_Q^{\gamma+j}q+P^{\gamma+j}_G$ $G^{\gamma+J}$ g $h^{dijet} = P_Q^{dijet}$ _,dijet q + P <mark>dijet</mark>
Q ^{,aijet} g P_Q = percentage quark $h =$ histogram value $q/g =$ templates

 $(\gamma + jet)/(dijet) =$ different sample

- But, need to account for b and c fractions (for now, taken from MC): $h^{\gamma+jet} = P_O^{\gamma+jet}$ $\displaystyle{q\atop Q}^{\gamma+jet}q\!+\!P^{\gamma+jet}_G$ $G^{+\textit{jet}}$ g $+ P^{\gamma + \textit{jet}}_B$ $\beta^{ \gamma + jet}_{B} b + P^{\gamma + jet}_{C}$ $\int_{C}^{\gamma + jet}$ C $h^{dijet} = P_{\Omega}^{dijet}$ dijet q+P <mark>dijet</mark>,
Q G g+P dijet _,dijet _{b+}Pdijet
B _cuijet c From Data From MC Solving for This
- Then, compare pure data shapes to pure MC shapes (used for training tagger)

Performance vs. Jet p_T

• Results are consistent across p_T : purified samples measurement generally agree with data, but MC significantly overestimates performance

<u>SL AC</u>

Gluon Efficiency vs. Quark Efficiency, with $Hervig++$

• Herwig $++$ generally agrees with data better: sometimes even under-predicts performance

Systematics Summary: 30% Operating Point

• Similar effects as at other operating points: largest here at low efficiency

Systematics Summary: 70% Operating Point

• Similar effects as at other operating points

Systematics Summary: 90% Operating Point

• Similar effects as at other operating points

Nonclosure: 30% Operating Point

• Breakdown of Pythia/Herwig $++$ disagreements with their respective templates

Nonclosure: 50% Operating Point

• Breakdown of Pythia/Herwig $++$ disagreements with their respective templates

Nonclosure: 70% Operating Point

• Breakdown of Pythia/Herwig $++$ disagreements with their respective templates

Nonclosure: 90% Operating Point

• Breakdown of Pythia/Herwig $++$ disagreements with their respective templates