A Field Theory Look at the Underlying Event

Wouter Waalewijn

In collaboration with Iain Stewart and Frank Tackmann

Introduction

Collisions at the LHC

- Hard scattering Initial and final state radiation • Soft radiation **Hadronization** $f \leftarrow$ H $\mathcal I$ \mathcal{I} J_{1} f $\overline{J_2}$ \overline{J}_3 s − $+$ Standard picture
in factorization
- Multiparton interactions
- Beam remnants

Experimental Evidence: Double Parton Scattering

- Additional hard scatterings are suppressed by dditional hard scatterings are suppressed by Λ^2 , Λ^2 aditional fiard scatterings are suppressed by $\Lambda_{\rm QCD}$ / $\rm V$ $\Lambda_{\rm QCD}^2/Q^2$
- Except for certain phase space regions (e.g. $\Delta^n_{\rm jets} \sim 0$) the result obtained using Alpgen+Herwig+Jimmy (A+H+J) for template *A* is shown in (b). The physics kcept for certain phase space regions (e.g. $\Delta_{\rm{iets}}^{\rm{r}} \sim 0$) to the left of the dotted line. Data and the overall fit were normalised to unity, template *^A* to 1 *^f* ^R $\Delta^n_{\rm jets} \sim 0$

What is the Underlying Event?

Possible contributions:

- 1. Primary soft radiation within factorization
- 2. Multiparton interactions
- 3. Beam remnants, factorization violation

Monte Carlo programs use 2:

- \cdot MI for small Q produce underlying event
- Tuned away from jets and extrapolated to jet regions

f

s

f

 $\boldsymbol{\mathcal{H}}$

J

1

 $+$

 $\overline{2}$

J

3

J

−

 \mathcal{I}

 $\overline{\mathcal{I}}$

What is the Underlying Event?

Possible contributions:

- 1. Primary soft radiation within factorization
- 2. Multiparton interactions
- 3. Beam remnants, factorization violation

Monte Carlo programs use 2:

- \cdot MI for small Q produce underlying event
- Tuned away from jets and extrapolated to jet regions

Option 1 can be studied in factorization. We explore how well using only option 1 works for jet mass.,

f

s

f

 $\boldsymbol{\mathcal{H}}$

J

1

 $+$

 $\overline{2}$

J

3

J

−

 \mathcal{I}

 $\overline{\mathcal{I}}$

Underlying Event in Factorization

Hadronization and MI in Pythia describes UE data reasonably well

We will compare the features of the UE in Pythia with our predictions from factorization

Jet Mass in Pythia vs. Factorization

Factorization expectations:

• In the tail factorization predicts $m_J^2 \rightarrow m_J^2 + 2 p_T^J \Omega$ which agrees with Hadr.+MI

Factorization reproduces Pythia's Underlying Event

Factorization expectations:

- In the tail factorization predicts $m_J^2 \rightarrow m_J^2 + 2 p_T^J \Omega$ which agrees with Hadr.+MI
- More general:

$$
\frac{d\sigma}{dm_J^2} \to \int_0^\infty dk_s \, \frac{d\sigma}{dm_J^2} (m_J^2 - 2p_T^J k_s) \, F_{\rm NP}(k_s)
$$

Properties of Ω in Pythia

• Hadr. and MI described by $m_J^2 \rightarrow m_J^2 + 2p_T^J \Omega$

We find:

- Ω independent of p_T^J
- Ω_{hadr} independent of y_J , depends on part. channel
- Ω_{MI} depends on y_{J} , independent of channel

Properties of Ω in Pythia

• Hadr. and MI described by $m_J^2 \rightarrow m_J^2 + 2p_T^J \Omega$

We also find:

- $\Omega_{\text{hadr}} \sim R$ for $R \ll 1$
- $\Omega_{\text{MI}} \sim R^4 + \text{(smaller }\#)R^2$

(Agrees with Dasgupta et.al. 0712.3014) additional hadronization

Which properties (dis)agree if primary soft radiation accounts for UE?

$$
\frac{d\sigma}{dm_J^2} = f f L L H \int dk_s J(m_J^2 - 2p_T^J k_s) S(k_s)
$$

let function Soft function

• Soft function describes primary soft radiation:

 $S(k_s) = \langle 0|Y_J^{\dagger}(y_J)Y_{\overline{n}}^{\dagger}Y_{n}^{\dagger}\delta(k_s - \cosh y_J n_J \cdot \hat{p}_J) Y_n Y_{\overline{n}} Y_J(y_J)|0\rangle$ **Measurement** *n*

- Color indices are not written out
- Factorization implies that $\big\vert \Omega$ is independent of p_T^J

Yn

Factorization for Jet Mass

$$
\Omega = \langle 0|Y_J^{\dagger}(y_J)Y_{\bar{n}}^{\dagger}Y_{n}^{\dagger}\cosh y_J n_J \frac{\hat{v}_J}{n}Y_n Y_{\bar{n}}Y_J(y_J)|0\rangle
$$

Momentum in jet

• Y's and thus Ω depend on quark vs. gluon (color config.)

Factorization for Jet Mass

$$
\Omega = \langle 0|Y_J^{\dagger}(y_J)Y_{\bar{n}}^{\dagger}Y_{n}^{\dagger}\cosh y_J n_J \frac{\hat{p}_J}{\hat{p}_J}Y_n Y_{\bar{n}}Y_J(y_J)|0\rangle
$$

Momentum in jet

- Y's and thus Ω depend on quark vs. gluon (color config.)
- Boosting shows that $\big| \Omega$ is independent of y_J

But unlike e^+e^- the rapidity dependence of the observable matters

Dependence on Jet Radius *R*

Jet Radius Dependence

$$
\Omega = \frac{R}{2} \int_0^\infty dy \, e^{-y} \langle 0 | Y_J^\dagger Y_{\bar{n}}^\dagger (\ln \frac{R}{2}, \pi) Y_n^\dagger (\ln \frac{R}{2}, 0) \hat{\mathcal{E}}_\perp(r, y, \phi)(\ldots) |0\rangle
$$

Energy flow

- For $R \ll 1$, the beam Wilson lines fuse and $\boxed{\Omega = \frac{R}{2} \, \Omega_0 + \ldots}$
- The universal Ω_0 can be extracted from DIS event shapes (DIS Ω_0 : Dasgupta, Salam; Kang, Liu, Mantry, Qiu; Kang, Lee, Stewart) 17

"Underlying Event" Contribution

- No formal separation between hadronization and UE, but there are higher order in R contributions
- Decompose the measurement using energy flow \mathcal{L}_T

$$
\Omega = \int_0^1 dr \int_{-\infty}^{\infty} dy \int_0^{2\pi} d\phi f(r, y, \phi, R) \langle 0 | Y_J^{\dagger}(0) Y_B^{\dagger} Y_n^{\dagger} \hat{\mathcal{E}}_T(r, y, \phi) Y_n Y_n Y_J(0) | 0 \rangle
$$

\n
$$
f_E(\mathbf{\hat{Q}}, y, \phi, R) = \theta(y^2 + \phi^2 < R^2) \Big[(1 - r) + \frac{1}{2} y^2 + \frac{r}{2} \phi^2 + \dots \Big]
$$

\nTransverse velocity det region Momentum projection

- Ignoring the jet Wilson line, $\mathcal{E}_T(r,y,\phi)$ is approx. constant *E* $\hat{\mathcal{E}}$ $\dot{T}}(r,y,\phi)$ $\Omega_{\rm UE} =$ \int_0^1 0 dr ^{\lceil} $(1 - r)\pi R^2 +$ 1 8 $(1 + r)\pi R^4$ $\overline{1}$ *E* $\hat{\mathcal{E}}_T(r)$
- In the massless case ($r=1$), we find $\Omega_{\text{UE}}\sim R^4$

Perturbative Radiation

- There are perturbative and nonperturbative soft effects $S_{\text{pert}} \to S_{\text{pert}} \otimes F_{\text{NP}}$ (discussed before)
- Perturbative "UE" contribution

(Jouttenus et.al.)

• Parton channels have different 19 color factor C and Sudakov

Conclusions

• The underlying event for jet mass is described by a single parameter and is consistent with multiple interactions (Pythia) but also with primary soft radiation in factorization

 \cdot Factorization relates the coefficient of leading R term to hadronization effects in DIS event shapes

Underlying Event from Higher Order Corrections

- Higher order effects significantly improve description of data
- Part of "UE" can be from perturbative primary partons

Multiparton Interactions in Pythia

assumptions lead to the conclusion that the probability of multiple partonic scatters $\mathcal{L}_{\mathcal{A}}$

in a single hadron-hadron-hadron-hadron-hadron-hadron-hadron-hadron-hadron-hadron-hadron-hadron-hadron-hadron-

values below about 5 GeV, the total "hard" cross section calculated assuming one calculated assuming

parton-parton scatter per proton-proton collision exceeds the total cross section as

extrapolated using the non-perturbative fits, at LHC energies. This strongly implies \mathcal{L}_max

that the average number of partonic scatters in an inelastic collision must be greater α