A Field Theory Look at the Underlying Event

Wouter Waalewijn

In collaboration with Iain Stewart and Frank Tackmann

Introduction

Collisions at the LHC

- J_1 Sf J_2 \mathcal{I} Ħ \mathcal{I} J_3 Hard scattering Standard picture Initial and final state radiation in factorization Soft radiation Hadronization
- Multiparton interactions
- Beam remnants

•

Experimental Evidence: Double Parton Scattering

- Additional hard scatterings are suppressed by $\Lambda^2_{
 m OCD}/Q^2$
- Except for certain phase space regions (e.g. $\Delta_{\rm jets}^n \sim 0)$

What is the Underlying Event?

Possible contributions:

- 1. Primary soft radiation within factorization
- 2. Multiparton interactions
- 3. Beam remnants, factorization violation

Monte Carlo programs use 2:

- MI for small \boldsymbol{Q} produce underlying event
- Tuned away from jets and extrapolated to jet regions

S

 \mathcal{I}

Η

What is the Underlying Event?

Possible contributions:

- 1. Primary soft radiation within factorization
- 2. Multiparton interactions
- 3. Beam remnants, factorization violation

Monte Carlo programs use 2:

- MI for small Q produce underlying event
- Tuned away from jets and extrapolated to jet regions

Option 1 can be studied in factorization. We explore how well using only option 1 works for jet mass.⁷

S

 \mathcal{I}

Η

Underlying Event in Factorization

Hadronization and MI in Pythia describes UE data reasonably well

We will compare the features of the UE in Pythia with our predictions from factorization

Jet Mass in Pythia vs. Factorization

Factorization expectations:

- In the tail factorization predicts $m_J^2 \to m_J^2 + 2p_T^J \Omega$ which agrees with Hadr.+MI

Factorization reproduces Pythia's Underlying Event

Factorization expectations:

- In the tail factorization predicts $m_J^2 \to m_J^2 + 2p_T^J \Omega$ which agrees with Hadr.+MI
- More general:

$$\frac{d\sigma}{dm_J^2} \to \int_0^\infty dk_s \, \frac{d\sigma}{dm_J^2} (m_J^2 - 2p_T^J k_s) \, F_{\rm NP}(k_s)_{_{10}}$$

Properties of Ω in Pythia

- Hadr. and MI described by $m_J^2 \to m_J^2 + 2 p_T^J \Omega$

We find:

- Ω independent of p_T^J
- Ω_{hadr} independent of y_J , depends on part. channel
- $\Omega_{\rm MI}$ depends on y_J , independent of channel

Properties of Ω in Pythia

- Hadr. and MI described by $m_J^2 \to m_J^2 + 2 p_T^J \Omega$

We also find:

- $\Omega_{\rm hadr} \sim R$ for $R \ll 1$
- $\Omega_{\mathrm{MI}} \sim R^4 + (\mathrm{smaller} \ \#)R$

(Agrees with Dasgupta et.al. 0712.3014) additional hadronization

Which properties (dis)agree if primary soft radiation accounts for UE?

$$\frac{d\sigma}{dm_J^2} = ff \mathcal{I} \mathcal{I} H \int \frac{dk_s J(m_J^2 - 2p_T^J k_s) S(k_s)}{\int \text{Jet function}} Soft \text{ function}$$

• Soft function describes primary soft radiation:

 $S(k_s) = \langle 0 | Y_J^{\dagger}(y_J) Y_{\bar{n}}^{\dagger} Y_n^{\dagger} \, \delta(k_s - \cosh y_J \, n_J \cdot \hat{p}_J) \, Y_n Y_{\bar{n}} Y_J(y_J) | 0 \rangle$ Measurement

Color indices are not written out

Factorization for Jet Mass

• Factorization implies that $|\Omega|$ is independent of p_T^J

Factorization for Jet Mass

$$\Omega = \langle 0 | Y_J^{\dagger}(y_J) Y_{\bar{n}}^{\dagger} Y_n^{\dagger} \cosh y_J n_J \cdot \hat{p}_J Y_n Y_{\bar{n}} Y_J(y_J) | 0 \rangle$$

Momentum in jet

• *Y*'s and thus Ω depend on quark vs. gluon (color config.)

Factorization for Jet Mass

$$\Omega = \langle 0 | Y_J^{\dagger}(y_J) Y_{\bar{n}}^{\dagger} Y_n^{\dagger} \cosh y_J n_J \cdot \hat{p}_J Y_n Y_{\bar{n}} Y_J(y_J) | 0 \rangle$$

Momentum in jet

- Y's and thus Ω depend on quark vs. gluon (color config.)
- Boosting shows that Ω is independent of y_J

But unlike e^+e^- the rapidity dependence of the observable matters

Dependence on Jet Radius R

Jet Radius Dependence

$$2 = \frac{\pi}{2} \int_{0} dy \, e^{-y} \langle 0 | Y_{J}^{\dagger} Y_{\bar{n}}^{\dagger} (\ln \frac{R}{2}, \pi) Y_{n}^{\dagger} (\ln \frac{R}{2}, 0) \hat{\mathcal{E}}_{\perp}(r, y, \phi)(\dots) | 0 \rangle$$
Energy flow

- For $R \ll 1$, the beam Wilson lines fuse and $\Omega = \frac{R}{2} \Omega_0 + \dots$
- The universal Ω_0 can be extracted from DIS event shapes (DIS Ω_0 : Dasgupta, Salam; Kang, Liu, Mantry, Qiu; Kang, Lee, Stewart) 17

"Underlying Event" Contribution

- No formal separation between hadronization and UE, but there are higher order in *R* contributions
- Decompose the measurement using energy flow \mathcal{E}_T

$$\begin{split} \Omega &= \int_0^1 dr \int_{-\infty}^\infty dy \int_0^{2\pi} d\phi \, f(r, y, \phi, R) \langle 0 | Y_J^{\dagger}(0) Y_{\bar{n}}^{\dagger} Y_n^{\dagger} \hat{\mathcal{E}}_T(r, y, \phi) \, Y_n Y_{\bar{n}} Y_J(0) | 0 \rangle \\ f_E(r, y, \phi, R) &= \theta(y^2 + \phi^2 < R^2) \Big[(1 - r) + \frac{1}{2} y^2 + \frac{r}{2} \phi^2 + \dots \Big] \\ \text{Transverse velocity} & \text{Jet region} & \text{Momentum projection} \end{split}$$

- Ignoring the jet Wilson line, $\hat{\mathcal{E}}_T(r, y, \phi)$ is approx. constant $\Omega_{\rm UE} = \int_0^1 dr \Big[(1-r)\pi R^2 + \frac{1}{8}(1+r)\pi R^4 \Big] \hat{\mathcal{E}}_T(r)$
- In the massless case (r=1), we find $\Omega_{\rm UE}\sim R^4$

Perturbative Radiation

- There are perturbative and nonperturbative soft effects $S_{
 m pert}
 ightarrow S_{
 m pert} \otimes F_{
 m NP}$ (discussed before)
- Perturbative "UE" contribution

(Jouttenus et.al.)

• Parton channels have different color factor C and Sudakov

Conclusions

 The underlying event for jet mass is described by a single parameter and is consistent with multiple interactions (Pythia) but also with primary soft radiation in factorization

Ω 's dependence	Pythia (hadr, MI)	Factorization
Partonic channel	Yes, <mark>No</mark>	Yes
p_T^J	No, No	No
y_J	No, Yes	No
R	$R+\ldots, R^4+\ldots$	R, R^2, R^4, \dots

• Factorization relates the coefficient of leading R term to hadronization effects in DIS event shapes

Underlying Event from Higher Order Corrections

- Higher order effects significantly improve description of data
- Part of "UE" can be from perturbative primary partons

Multiparton Interactions in Pythia

