Jet measurements in heavy ion collisions at the LHC

Brian. A Cole, Columbia University January 22, 2014

Jet probes of the quark gluon plasma

 Use jets from hard scattering processes to directly probe the quark gluon plasma (QGP)

Key experimental question:
How do parton showers in quark gluon plasma differ from those in vacuum?
Use vector bosons -- for which the QGP is transparent -- to calibrate hard scattering rates in Pb+Pb collisions.

Pb+Pb global energy flow

Characterizing Pb+Pb centrality

Phys. Lett. B707 (2012) 330-348

Minimum-bias distribution of ΣE_T over $3.2 < |\eta| < 4.9$ (EM scale)

 Large event-to-event variations in the UE due to the geometry of the collision

- "centrality" quoted in terms of percentiles

Event-by-event collective flow

 Underlying event in Pb+Pb collisions have complicated azimuthal structure due to initialstate fluctuations and collective dynamics

 Typically characterized by Fourier coefficients

$$\Rightarrow rac{dN}{d\phi dp_T d\eta} = rac{dN}{2\pi dp_T d\eta} \left(1 + \sum\limits_{m{n}} 2 m{v_n} \cos\left[m{n}(\phi - m{\psi_n})
ight]
ight)$$

- Measurable event-by-event.

The underlying event (ATLAS)

ATLAS-CONF-2012-045, https://cds.cern.ch/record/1440894

- In minimum-bias Pb+Pb events
 - Sum EM-scale tower E_T over NxN groups of towers (ΣΕ_T)
 - N chosen to match jet sizes

 \blacksquare R = 0.4 ↔ 7x7 (π x 0.4² = 0.50)

- Distributions shown to right for two different centralities
 - itop: peripheral
 - bottom: central

• Observe:

Distributions are NOT Gaussian (Gamma dist's)

The starting point

Reconstruct (unsubtracted) Pb+Pb event

 Here, for demonstration, with kt algorithm
 But the kt algorithm is problematic because the background jets "eat" edges of real jets

The underlying event

- ~ universal starting point for UE subtraction
 - $E_{\mathrm{T}}^{\mathrm{subtr}} = E_{\mathrm{T}}^{\mathrm{unsubtr}} \rho A$

But the details are critical

- Important considerations:
 - What kind of objects is subtraction applied to?

Towers, topoclusters, cells, ...

- How to estimate UE energy density, p?
- With what granularity?
- Event -by-event or event-averaged?

But if averaged, need separate measure of µ

- How to exclude jets, photons, ... from p?

The underlying event (ATLAS)

$$\rho(\eta) = \left\langle \frac{E_{\rm T}^i}{\Delta \eta^i \Delta \phi^i} \right\rangle_{i \notin \text{jet, } |\eta^i - \eta| < 0.05}$$

- For each Pb+Pb event:
 - For each calorimeter layer:

Calculate an AVERAGE (not median!) cell E_T density in Δη = 0.1 intervals

Excluding cells that lie within $\Delta R = 0.4$ of seeds

• Then, apply $E_{T}^{subtr} = E_{T}^{unsubtr} - \rho A$ to each cell within tower constituents of reconstructed jets

ATLAS jet reconstruction (2010)

ATLAS Pb+Pb jet performance (2010)

Phys. Lett. B 719 (2013) 220-241

Jet is considered not fake if within R = 0.2: - R = 0.4 track jet (rec. from tracks w/ p_T > 4 GeV), photon, or electron with p_T > 7 GeV

ATLAS jet performance (2010 data)

Data-driven evaluation of underlying event fluctuations

HIJING MC evaluation of performance

Efficiency

Wednesday, January 22, 14

Pb+Pb Jet Spectra (2010)

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02/

• For these results, no absolute normalization – awaiting absolute jet energy scale uncertainty

Wednesday, January 22, 14

Hard scattering rate control: Z

$Z \rightarrow e^+e^-$ event display

$Z \rightarrow \mu^+ \mu^-$ event display

Wednesday, January 22, 14

Hard scattering rate control: Z

 Compare Pb+Pb Z rapidity distributions (minimum-bias) and pT spectra to PYTHIA scaled to NNLO calculations

 No nuclear PDFs

 \Rightarrow Nuclear PDF effects <~ 20%

Jet suppression: central/peripheral

Phys. Lett. B 719 (2013) 220-241

Differential jet suppression

Phys. Rev. Lett 111, 152301 (2013)

Measure jet yields in 8 bins of Δφ with respect to the elliptic event plane
 – Here for R = 0.2 jets, 60 < p_T < 80 GeV
 ⇒UE subtraction corrected for elliptic flow modulation in calorimeter

Pb+Pb Inclusive jet fragmentation

ATLAS-CONF-2012-115, https://cds.cern.ch/record/1472936

Unfolded for jet and charged particle resolution

$$egin{split} D(z) &= rac{1}{N_{jet}} rac{dN_{chg}}{dz}, z = ec{p}_{chg} \cdot ec{p}_{jet} / \left|ec{p}_{jet}
ight|^2 \ D(p_T) &= rac{1}{N_{jet}} rac{dN_{chg}}{dp_T} \end{split}$$

Wednesday, January 22, 14

Inclusive jet fragmentation (2)

 Ratio of fragmentation functions between different centrality bins and peripheral (60-80%)

Inclusive jet fragmentation (3)

Check that the modification is not due to the measurement of jet p_T ⇒ D(p_T)
 ⇒D(p_T) shows similar modifications

ATLAS & CMS jet fragmentation

First direct handle on the p_T dependence of modifications of the parton shower.
 ⇒How much of the modification results from changes in the quark/gluon fraction?
 ⇒ η dependence (q/g fraction)?

γ-jet momentum balance

R = 0.2

R = 0.3

ATLAS-CONF-2012-121, https://cds.cern.ch/record/1473135

• Plot distribution of $x_J = p_T^{jet} / p_T^{\gamma}$ - photon background pairs subtracted - unfolded for jet energy resolution \Rightarrow Substantial change in γ -jet balance

Summary, thoughts

- Several measurements (more to be shown in following talk) showing that parton showers are modified in the quark gluon plasma.
 - Complete (and unique) theoretical explanation still not yet available.
 - ⇒Do not yet have a validated and tuned event generator capable of describing the data.
- Tools for handling the UE in Pb+Pb collisions and high pile-up p-p are not (yet?) converging
 ⇒Problems are similar, not the same.
 - \Rightarrow Do we care?
- Flavor tagging in Pb+Pb collisions will be difficult until we understand quenching.
 - ⇒But, gamma-jet, W/Z-jet measurements allow us to change the q/g mixture. Good place to start.

CMS jet suppression, RAA (pp ref.)

First results on jet R_{AA} @ LHC ⇒ Consistent behavior with ATLAS R_{cp}

Wednesday, January 22, 14

```
25
```

Jet fragmentation: R dependence

Check that the modification is not due to underlying event fluctuations
 Use different jet sizes:

R = 0.2, 0.3

• Obtain the same results as R = 0.4

⇒Observed modifications are robust

CMS gamma-jet

Analogous to dijet measurement but with "clean" photon
See clear shift in fraction of photon energy carried by jet
But beware, photon is not proxy for unquenched jet (p-p)

Wednesday, January 22, 14

ATLAS dijet asymmetry measurement

Phys. Rev. Lett. 105 (2010) 252303

$A_J = \frac{E_{T_1} - E_{T_2}}{E_{T_1} + E_{T_2}}$ $E_{T_1} > 100 \ GeV$ $E_{T_2} > 25 \ GeV$

Dijets: CMS 2011 data

 Clear demonstration that the effects of differential quenching extend to high p⊤
 –what is role of jet flavor (quark, gluon, heavy)?
 ⇒In particular, gg vs qg.