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IntroducYon	  



MoYvaYon	  to	  study	  heavy	  ion	  collisions	  

•  QCD	  predicts	  the	  existence	  of	  Quark	  Gluon	  Plasma	  (QGP)	  
•  Recreate	  in	  laboratory	  condiYons	  the	  ma`er	  that	  was	  
present	  in	  the	  Early	  Universe,	  microseconds	  aber	  the	  Big	  
Bang	  

• To study the properties of Quark Gluon 
Plasma, predicted by QCD

• Connection to Early Universe (a few 
microseconds after the Big Bang)

Motivation to study heavy-ion collisions
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Experimental	  faciliYes	  
RHIC:	  Au-‐Au,	  ENN=20-‐200	  GeV	   LHC:	  Pb-‐Pb,	  ENN=2.76	  TeV	  

•  LHC	  has	  confirmed	  at	  much	  higher	  energies	  
the	  qualitaYve	  features	  found	  in	  RHIC	  data	  

•  Jet	  Quenching	  clearly	  observed	  in	  both	  
experiments	  



Jet	  Quenching	  

RAA(pT ) =
�AA(pT )

hN
coll

i�pp(pT )

Measuring	  a	  suppressed	  nuclear	  modificaYon	  factor	  is	  
observaYonal	  evidence	  for	  jet	  quenching	  in	  heavy	  ion	  collisions	  

Inclusive	  producYon	  of	  jets	  
LHC,	  7	  TeV	  



Jet	  Quenching	  
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Figure 3: RAA in central (0–5%) and peripheral (70–80%) Pb–Pb collisions at
√
s
NN

= 2.76 TeV. Error bars

indicate the statistical uncertainties. The boxes contain the systematic errors in the data and the pT dependent

systematic errors on the pp reference, added in quadrature. The histograms indicate, for central collisions only,

the result for RAA at pT > 6.5 GeV/c using alternative pp references obtained by the use of the pp̄ measurement

at
√
s
NN

= 1.96 TeV [26] in the interpolation procedure (solid) and by applying NLO scaling to the pp data at 0.9

TeV (dashed) (see text). The vertical bars around RAA = 1 show the pT independent uncertainty on ⟨Ncoll⟩.
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Figure 4: Comparison of RAA in central Pb–Pb collisions at LHC to measurements at
√
s
NN

= 200 GeV by the

PHENIX [30] and STAR [31] experiments at RHIC. The error representation of the ALICE data is as in Fig. 3.

The statistical and systematic errors of the PHENIX data are shown as error bars and boxes, respectively. The

statistical and systematic errors of the STAR data are combined and shown as boxes. The vertical bars around

RAA = 1 indicate the pT independent scaling errors on RAA.
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High energy heavy-ion collisions enable the study of strongly interacting matter under extreme condi-

tions. At sufficiently high collision energies Quantum-Chromodynamics (QCD) predicts that hot and

dense deconfined matter, commonly referred to as the Quark-Gluon Plasma (QGP), is formed. With the

advent of a new generation of experiments at the CERN Large Hadron Collider (LHC) [1] a new energy

domain is accessible to study the properties of this state.

Previous experiments at the Relativistic Heavy Ion Collider (RHIC) reported that hadron production

at high transverse momentum (pT ) in central (head-on) Au–Au collisions at a centre-of-mass energy

per nucleon pair
√
s
NN
of 200 GeV is suppressed by a factor 4–5 compared to expectations from an

independent superposition of nucleon-nucleon (NN) collisions [2, 3, 4, 5]. The dominant production

mechanism for high-pT hadrons is the fragmentation of high-pT partons that originate in hard scatterings

in the early stage of the nuclear collision. The observed suppression at RHIC is generally attributed to

energy loss of the partons as they propagate through the hot and dense QCD medium [6, 7, 8, 9, 10].

To quantify nuclear medium effects at high pT , the so called nuclear modification factor RAA is used.

RAA is defined as the ratio of the charged particle yield in Pb–Pb to that in pp, scaled by the number of

binary nucleon–nucleon collisions ⟨Ncoll⟩

RAA(pT ) =
(1/NAA

evt )d
2NAA

ch /d!dpT
⟨Ncoll⟩(1/Npp

evt )d2N
pp

ch /d!dpT
,

where ! = − ln(tan"/2) is the pseudo-rapidity and " is the polar angle between the charged particle
direction and the beam axis. The number of binary nucleon–nucleon collisions ⟨Ncoll⟩ is given by the
product of the nuclear overlap function ⟨TAA⟩ [11] and the inelastic NN cross section #NN

inel . If no nuclear

modification is present, RAA is unity at high pT .

At the larger LHC energy the density of the medium is expected to be higher than at RHIC, leading to a

larger energy loss of high pT partons. On the other hand, the less steeply falling spectrum at the higher

energy will lead to a smaller suppression in the pT spectrum of charged particles, for a given magnitude

of partonic energy loss [9, 10]. Both the value of RAA in central collisions as well as its pT dependence

may also in part be influenced by gluon shadowing and saturation effects, which in general decrease with

increasing x and Q2.

This Letter reports the measurement of the inclusive primary charged particle transverse momentum

distributions at mid-rapidity in central and peripheral Pb–Pb collisions at
√
s
NN

= 2.76 TeV by the ALICE
experiment [12]. Primary particles are defined as prompt particles produced in the collision, including

decay products, except those from weak decays of strange particles. The data were collected in the first

heavy-ion collision period at the LHC. A detailed description of the experiment can be found in [12].

For the present analysis, charged particle tracking utilizes the Inner Tracking System (ITS) and the Time

Projection Chamber (TPC) [13], both of which cover the central region in the pseudo-rapidity range

|! | < 0.9. The ITS and TPC detectors are located in the ALICE central barrel and operate in the 0.5 T
magnetic field of a large solenoidal magnet. The TPC is a cylindrical drift detector with two readout

planes on the endcaps. The active volume covers 85< r < 247 cm and −250< z< 250 cm in the radial
and longitudinal directions, respectively. A high voltage membrane at z = 0 divides the active volume

into two halves and provides the electric drift field of 400 V/cm, resulting in a maximum drift time of

94 µs.

The ITS is used for charged particle tracking and trigger purposes. It is composed of six cylindrical layers

of high resolution silicon tracking detectors with radial distances to the beam line from 3.9 to 43 cm. The

two innermost layers are the Silicon Pixel Detectors (SPD) with a total of 9.8 million pixels, read out by

1200 chips. Each chip provides a fast signal if at least one of its pixels is hit. The signals from the 1200

chips are combined in a programmable logic unit which supplies a trigger signal. The SPD contributes

to the minimum-bias trigger, if hits are detected on at least two chips on the outer layer. The SPD is

New LHC heavy ion data!

ALICE collaboration, 11-12/2010

the number of binary nucleon-nucleon collisions
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Data	  from	  RHIC	  and	  LHC	  on	  RAA	  both	  	  
show	  suppression	  compared	  to	  1,	  as	  
a	  strong	  indicaYon	  of	  final	  state	  
effects	  in	  the	  medium	  created	  in	  
heavy	  ion	  collisions	  



Jets	  at	  RHIC	  vs	  LHC	  

Events	  at	  LHC	  look	  much	  more	  “je`y”	  than	  at	  RHIC	  even	  by	  eye	  



• The medium is modeled with a finite number of 
scattering centers with static Debye-screened 
potential

H =
NX

n=1

H(q;x
n

) = 2⇡�(q0) v(q)
NX

n=1

eiqxn T a(R)⌦ T a(n)

v(q) =
4⇡↵s

q2z + q2 + µ2

Gyulassy, Wang, 94

• The momentum scaling of the 
exchange gluon is that of the 
Glauber gluon:  q(�2,�2,�)

Gyulassy-Wang model

⌦ ⌦ ⌦

⌦

⌦

⌦
⌦

⌦
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Gyulassy-Levai-Vitev reaction operator

Jet broadening

Radiative energy loss

algebraic classification of diagrams given in Ref. [ 27] to include virtual double Born amplitudes needed
in the inclusive case. Sec. III C summarizes the rules of diagrammatic calculus that emerge from detailed
analysis of diagrams in Appendix A through Appendix E.

In Sec. IV the new reaction operator formalism is developed. First, operators D̂n, V̂n in Eqs. (76,81) are
constructed from the diagrammatic rules. Products of these operators create partial sums of direct and
virtual amplitudes from the initial hard vacuum amplitude. Those partial sums, Eq. (60), form 3n classes
of diagrams that can be conveniently enumerated via a tensor notation and used to construct recursion
relations. In Sec. IV B, the reaction operator, R̂n = D̂†

nD̂n + V̂n + V̂ †
n , is constructed to relate the nth order

in opacity inclusive radiation probability distribution to classes of diagrams of order n − 1. The resulting
simple recursion relation, Eq. (97), can be solved in closed form. The general solution, Eq. (101), is suitable
for implementation in Monte Carlo event generators to study observable consequences of jet quenching in
nuclear collisions.

Color triviality of the inclusive distribution is proven to all orders algebraically with Eq. (101). The proof
is much simpler and more transparent than in the path integral formulations [ 13, 20, 34] and is not limited
to quark jets.

In Sec IV C a compact general expression for the momentum transfer averaged inclusive distributions,
Eq. (113) is derived. Appendix F provides an independent check of this solution through second order
starting from the amplitude iteration technique. Numerical results comparing angular distributions of gluons
up to the first three orders in opacity are presented in Sec. V A. Analytic and numerical results for the
angular integrated intensity distributions are compared in Sec. V B. It is shown that the induced intensity
is dominated by the first order in opacity result that is already quadratic in L.

A brief summary of these results up to second order in opacity was reported in Ref. [ 28]. The main result
of this paper is the new reaction operator derivation of the solutions, Eq. (101,113), that specify the inclusive
non-abelian radiation distribution to any order in opacity.

II. ELASTIC SCATTERING AND UNITARITY

To illustrate how the double Born graphs cancel direct contributions to preserve unitarity we review here
the simplest case of elastic scattering. Consider a wave packet j(p) of a parton prepared at time t0 and
localized at x⃗0 = (z0,x0) in color representation R. The (color matrix) amplitude to measure its momentum
as p⃗ in the absence of final state interactions is

M0 ≡ ieipx0j(p) × 1 . (7)

Multiplying |M0|2 by the invariant one particle phase space element d3p⃗/((2π)32|p⃗|) and taking the color
trace gives the unperturbed inclusive distribution of jets in the wave packet:

d3N0 = Tr |M0|2
d3p⃗

2|p⃗|(2π)3
= |j(p)|2

dR d3p⃗

2|p⃗|(2π)3
. (8)

Consider next the effect of final state elastic interactions with an array of static potentials localized at
x⃗i = (zi,bi) using

HI(t) =

∫

d3x⃗

N
∑

i=1

v(x⃗ − x⃗1)Ta(i)φ†(x⃗, t)Ta(R)D̂(t)φ(x⃗, t) , (9)

where D̂(t) = i
↔
∂t and TrTa(i)Tb(j) = δijδabC2(T )dT /dA. We will compute the three graphs in Fig. 1. The

first order, direct amplitude to scatter with one of the (static) target partons is

M1 = ieipx0

∫

d4q

(2π)4
j(p − q)∆(p − q)v(q)D(2p − q)

N
∑

j=1

eiq(xj−x0)Ta(j)Ta(R) , (10)

where ∆(p) ≡ (p2 + iϵ)−1 and D(p) = p0. The sum of double Born amplitudes in the same external potential
is

4

Gyulassy, Levai, Vitev, 00

meson dissociation, electromagnetic energy loss
Other applications:

• Using GLV approach both RAA and di-hadron(jet) 
imbalance have been successfully predicted

• We want to do similar calculations with effective 
theory Lagrangian SCETG

•

p

x0

J

k
µ, a

⌦ ⌦⌦ ⌦ ⌦ ⌦

p

x0

J

⌦ ⌦⌦ ⌦ ⌦ ⌦⌦⌦
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Energy	  loss	  approach,	  valid	  in	  the	  limit	  x	  <<	  1	  



Medium-‐induced	  spliZng	  funcYons	  
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SCETG	  
Sob	  Collinear	  EffecYve	  Theory	  with	  Glauber	  Gluons	  

•  Glauber	  gluons	  are	  
needed	  to	  describe	  t-‐
channel	  exchanges	  
between	  jets	  and	  
medium	  quasi-‐
parYcles	  

•  Emission	  of	  collinear	  
parYcles	  is	  described	  
by	  SCET	  Lagrangian	  

•  Allows	  for	  
calculaYons	  beyond	  
the	  small	  x	  limit	  

GO,	  Vitev,	  2011	  



Results	  
Rξ	   A+	   Hyb.	  

W+	   ✔	   ✖	   ✖	  

Tn	   ✖	   ✔	   ✖	  

Gauge	  invariance	  
explicitly	  demonstrated	  

GO,	  Vitev,	  2011	  

FactorizaYon	  of	  the	  
medium-‐induced	  
spliZng	  from	  the	  
producYon	  proved	  

All	  four	  medium-‐
induced	  spliZngs	  
calculated	  beyond	  
small	  x	  approximaYon	  



Jet	  Quenching	  from	  QCD	  evoluYon	  
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Jet	  quenching	  from	  evoluYon	  

•  With	  this	  scale	  choice	  the	  Hard	  funcYon	  need	  not	  be	  evolved.	  The	  PDF’s	  
and	  the	  FragmentaYon	  funcYon	  need	  to	  be	  evolved	  from	  low	  to	  high	  scale	  

•  Because	  medium-‐induced	  spliZng	  is	  a	  final	  state	  effect,	  PDF’s	  need	  to	  be	  
evolved	  with	  vacuum	  (Altarelli-‐Parisi)	  spliZng	  funcYons	  

•  The	  FragmentaYon	  funcYon	  needs	  to	  be	  evolved	  with	  medium-‐induced	  
spliZng	  funcYon	  

•  Can	  we	  predict	  RAA	  suppression	  from	  QCD	  evoluYon?	  
•  This	  method	  will	  allow	  to	  include	  consistently	  inclusion	  of	  finite	  x	  

correcYons	  

⇤QCD

pT H	  

f,	  D	  

The	  simplest	  choice	  is:	  
	  

µ = pT

RAA(pT ) =
H(µ, pT )⌦ f(µ)⌦ f(µ)⌦Dmed(µ)

H(µ, pT )⌦ f(µ)⌦ f(µ)⌦D(µ)



Collinear	  spliZng	  funcYons	  

•  The	  collinear	  spliZng	  funcYons	  are	  process	  independent	  
•  The	  virtual	  contribuYon	  is	  extracted	  from	  momentum	  and	  

flavor	  conservaYon	  sum	  rules	  
	  
	  

	  

collinear	  gluon	  

d�n d�n+1

DGLAP	  
Gribov,	  Lipatov,	  1972	  
Altarelli,	  Parisi,	  1977	  
Dokshitzer,	  1977	  
	  	  

(k2
⊥ < 0) (k⊥ · p = k⊥ · n = 0) or, equivalently, how the collinear direction is approached.

In the small-k⊥ limit (i.e. neglecting terms that are less singular than 1/k2
⊥), the square of

the matrix element in Eq. (1) fulfils the following factorization formula [1]

|Ma1,a2,...(p1, p2, . . .)|
2 ≃

2

s12
4πµ2ϵαS T ss′

a,...(p, . . .) P̂ ss′

a1a2
(z, k⊥; ϵ) , (7)

where µ is the dimensional-regularization scale. The spin-polarization tensor T ss′

a,...(p, . . .) is
obtained by replacing the partons a1 and a2 on the right-hand side of Eq. (2) with a single
parton denoted by a. This parton carries the quantum numbers of the pair a1 + a2 in the
collinear limit. In other words, its momentum is pµ and its other quantum numbers (flavour,
colour) are obtained according to the following rule: anything + gluon gives anything and
quark + antiquark gives gluon.

The kernel P̂a1a2
in Eq. (7) is the d-dimensional Altarelli–Parisi splitting function [21]. It

depends not only on the momentum fraction z involved in the collinear splitting a → a1+a2,
but also on the transverse momentum k⊥ and on the helicity of the parton a in the matrix
element Mc,...;s,...

a,... (p, . . .). More precisely, P̂a1a2
is in general a matrix acting on the spin

indices s, s′ of the parton a in the spin-polarization tensor T ss′

a,...(p, . . .). Because of these
spin correlations, the spin-average square of the matrix element Mc,...;s,...

a,... (p, . . .) cannot be
simply factorized on the right-hand side of Eq. (7).

The explicit expressions of P̂a1a2
, for the splitting processes

a(p) → a1(zp + k⊥ + O(k2
⊥)) + a2((1 − z)p − k⊥ + O(k2

⊥)) , (8)

depend on the flavour of the partons a1, a2 and are given by

P̂ ss′

qg (z, k⊥; ϵ) = P̂ ss′

q̄g (z, k⊥; ϵ) = δss′ CF

[
1 + z2

1 − z
− ϵ(1 − z)

]

, (9)

P̂ ss′

gq (z, k⊥; ϵ) = P̂ ss′

gq̄ (z, k⊥; ϵ) = δss′ CF

[
1 + (1 − z)2

z
− ϵz

]

, (10)

P̂ µν
qq̄ (z, k⊥; ϵ) = P̂ µν

q̄q (z, k⊥; ϵ) = TR

[

−gµν + 4z(1 − z)
kµ
⊥kν

⊥

k2
⊥

]

, (11)

P̂ µν
gg (z, k⊥; ϵ) = 2CA

[

−gµν
(

z

1 − z
+

1 − z

z

)
− 2(1 − ϵ)z(1 − z)

kµ
⊥kν

⊥

k2
⊥

]

, (12)

where the SU(Nc) QCD colour factors are

CF =
N2

c − 1

2Nc

, CA = Nc , TR =
1

2
, (13)

and the spin indices of the parent parton a have been denoted by s, s′ if a is a fermion and
µ, ν if a is a gluon.

Note that when the parent parton is a fermion (cf. Eqs. (9) and (10)) the splitting
function is proportional to the unity matrix in the spin indices. Thus, in the factorization

3

formula (7), spin correlations are effective only in the case of the collinear splitting of a
gluon. Owing to the k⊥-dependence of the gluon splitting functions in Eqs. (11) and (12),
these spin correlations produce a non-trivial azimuthal dependence with respect to the
directions of the other momenta in the factorized matrix element.

Equations (9)–(12) lead to the more familiar form of the d-dimensional splitting func-
tions only after average over the polarizations of the parton a. The d-dimensional average
is obtained by means of the factors in Eqs. (3) and (4). Denoting by ⟨P̂a1a2

⟩ the average of
P̂a1a2

over the polarizations of the parent parton a, we have:

⟨P̂qg(z; ϵ)⟩ = ⟨P̂q̄g(z; ϵ)⟩ = CF

[
1 + z2

1 − z
− ϵ(1 − z)

]

, (14)

⟨P̂gq(z; ϵ)⟩ = ⟨P̂gq̄(z; ϵ)⟩ = CF

[
1 + (1 − z)2

z
− ϵz

]

, (15)

⟨P̂qq̄(z; ϵ)⟩ = ⟨P̂q̄q(z; ϵ)⟩ = TR

[

1 −
2z(1 − z)

1 − ϵ

]

, (16)

⟨P̂gg(z; ϵ)⟩ = 2CA

[
z

1 − z
+

1 − z

z
+ z(1 − z)

]
. (17)

In the rest of the paper we are interested in the collinear limit at O(α2
S). In this case

three parton momenta can simultaneously become parallel. Denoting these momenta by
p1, p2 and p3, their most general parametrization is

pµ
i = xip

µ + kµ
⊥i −

k2
⊥i

xi

nµ

2p · n
, i = 1, 2, 3 , (18)

where, as in Eq. (6), the light-like vector pµ denotes the collinear direction and the auxiliary
light-like vector nµ specifies how the collinear direction is approached (k⊥i ·p = k⊥i ·n = 0).
Note that no other constraint (e.g.

∑
i xi = 1 or

∑
i k⊥i = 0) is imposed on the longitudinal

and transverse variables xi and k⊥i. Thus, we can easily consider any (asymmetric) collinear
limit at once.

In the triple-collinear limit, the matrix element squared |Ma1,a2,a3,...(p1, p2, p3, . . .)|2 has
the singular behaviour |Ma1,a2,a3,...(p1, p2, p3, . . .)|2 ∼ 1/(ss′), where s and s′ can be either
two-particle (sij = (pi + pj)2) or three-particle (s123 = (p1 + p2 + p3)2) sub-energies. More
precisely, it can be shown [19, 20] that the matrix element squared still fulfils a factorization
formula analogous to Eq. (7), namely

|Ma1,a2,a3,...(p1, p2, p3, . . .)|
2 ≃

4

s2
123

(4πµ2ϵαS)
2 T ss′

a,...(p, . . .) P̂ ss′

a1a2a3
. (19)

Likewise in Eq. (7), the spin-polarization tensor T ss′

a,...(p, . . .) is obtained by replacing the
partons a1, a2 and a3 with a single parent parton, whose flavour a is determined (see Sect. 3)
by flavour conservation in the splitting process a → a1 + a2 + a3.

4

q ! gq
g ! gg
g ! qq̄



EvoluYon	  equaYons	  

The evolution equations are given by standard Altarelli-Parisi equations:

df
q

(z,Q)

d lnQ
=

↵
s

(Q2)

⇡

Z

1

z

dz0

z0

n

P
q!qg

(z0, Q)f
q

⇣ z

z0
, Q

⌘

+ P
g!qq̄

(z0, Q)f
g

⇣ z

z0
, Q

⌘o

, (45)

df
q̄

(z,Q)

d lnQ
=

↵
s

(Q2)

⇡

Z

1

z

dz0

z0

n

P
q!qg

(z0, Q)f
q̄

⇣ z

z0
, Q

⌘

+ P
g!qq̄

(z0, Q)f
g

⇣ z

z0
, Q

⌘o

, (46)

df
g

(z,Q)

d lnQ
=

↵
s

(Q2)

⇡

Z

1

z

dz0

z0

(

P
g!gg

(z0, Q)f
g

⇣ z

z0
, Q

⌘

+P
q!gq

(z0, Q)
⇣

f
q

⇣ z

z0
, Q

⌘

+ f
q̄

⇣ z

z0
, Q

⌘⌘

)

. (47)

The complete medium-induced splitting functions look like:

P
(1)

i

(z,Q) = P vac

i

(z) [1 + g
i

(x,Q,L, µ)] , (48)

where the individual terms with all the plus prescriptions and virtual pieces are summarized in
sections 2, 3. These evolution equations have to be solved with initial conditions for parton densities
for quarks, anti-quarks and gluons to equal �(1� z) at some infrared scale ⇠ fewGeV. The resulting
so-called PDF’s at the hard scattering scale Q = p

T

look like f
i/j

(z, p
T

), and have an intuitive
interpretation: probability of the parton i to be found in the parton j at the momentum transfer
scale Q = p

T

. For example f
g/q

(z, p
T

) is the solution for the gluon density from the evolution
equations with the initial conditions f

q

(z, µ
IR

) = �(1� z), f
q̄

(z, µ
IR

) = f
g

(z, µ
IR

) = 0, and so forth.
As a result of solving the A-P evolution equations we get the full LL series resummed by:

�(i)(p
T

) =
X

j=q,q̄,g

Z

1

0

dz �(j)

⇣p
T

z

⌘

f
i/j

(z, p
T

), (49)

where i = q, q̄, g. It is straightforward to check, that by plugging in the lowest order solutions of
the evolution equations, into the equations above, we reproduce Eq. (42), a nice sanity check. In
addition, the equation above when combined properly with the evolution equations contains all the
leading order logarithms resummed. This should be more relevant for the LHC phenomenology where
the energies are higher than RHIC.

TODO: Check if there are additional factors from reversing A-P equations and the
cross section formulas from initial state to the final state.

Small x approximation

The coupled Altarelli-Parisi evolution equations Eq. (45)-Eq. (47) simplify tremendously for the
small x approximation and become uncoupled. To see this we present the small x approximation of
medium-induced splitting functions:

P
q!qg

=
2C

F

x
+

+

✓

2C
F

x
g[x,Q,L, µ]

◆

+

, (50)
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The	  form	  of	  the	  evoluYon	  equaYons	  is	  same	  as	  the	  
tradiYonal	  Altareli-‐Parisi	  evoluYon	  equaYons:	  

For	  the	  FragmentaYon	  funcYon	  we	  need	  to	  include	  in	  
addiYon	  to	  vacuum	  evoluYon,	  the	  medium-‐induced	  
spliZng	  terms.	  	  
Similarly	  to	  the	  vacuum	  case	  the	  virtual	  pieces	  we	  
determine	  from	  the	  momentum	  and	  flavor	  sum	  rules	  

P=Pvac+Pmed	  

Real	  emission	  
calculated	  in	  
GO,	  Vitev,	  2011	  



Small	  x	  limit	  of	  spliZng	  funcYons	  
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◆
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, (51)

P
g!qq̄

= 0, (52)

P
q!gq

= 0, (53)

where the function g equals to:

g[x,Q,L, µ] =

Z

d�z

�
g

(�z)
d2q?

1

�
el

d�medium

el

d2q?

2k? ·q?
(k? � q?)2



1� cos
(k? � q?)2

xp+
0

�z

�

. (54)

From this it is clear that the A-P equations uncouple for di↵erent partons. In the following section
we solve approximately the small-x evolution equations and show connections to the energy loss ap-
proach.

3.3 From QCD evolution to energy loss

In this section we show that in the small x limit the approximate solution to the evolution equation
for the fragmentation function is intimately connected with the energy-loss approach. In the small x
approximation the evolution equation for the fragmentation function looks like:

dD(z,Q)

d lnQ
=

↵
s

⇡

Z

1

z

dz0

z0
�

P (z0, Q)
�

+

D(z/z0, Q). (55)

In the equation above the splitting function P contains both vacuum or medium terms, and is given
by expressions in Eq. (50) and Eq. (51). Next we write out explicitly the evolution equation and
approximate it with z0 ⇡ 1 which follows from the fact that D(z,Q) is falling steeply with increasing
z:
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⇡
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⇡
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Now we use one more approximation, that the fragmentation function has a fixed steepness:

✓

1 + z
@

@z

◆

D(z,Q) ⇡ (1� n(z))D(z,Q), (57)

and we will think of n as some number that depends on z but we neglect the dependence on Q. Using
the above two approximations we get the following simplified equation:

d lnD(z,Q)

d lnQ
= �↵

s

⇡
(n(z)� 1)

Z

1

z

dz0 (1� z0)P (z0, Q). (58)
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From this it is clear that the A-P equations uncouple for di↵erent partons. In the following section
we solve approximately the small-x evolution equations and show connections to the energy loss ap-
proach.

3.3 From QCD evolution to energy loss
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dD(z,Q)

d lnQ
=

↵
s

⇡

Z

1

z

dz0

z0
�

P (z0, Q)
�

+

D(z/z0, Q). (55)

In the equation above the splitting function P contains both vacuum or medium terms, and is given
by expressions in Eq. (50) and Eq. (51). Next we write out explicitly the evolution equation and
approximate it with z0 ⇡ 1 which follows from the fact that D(z,Q) is falling steeply with increasing
z:
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Now we use one more approximation, that the fragmentation function has a fixed steepness:
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D(z,Q) ⇡ (1� n(z))D(z,Q), (57)

and we will think of n as some number that depends on z but we neglect the dependence on Q. Using
the above two approximations we get the following simplified equation:
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xE0

E0

(1� x)E0

•  In	  the	  small	  x	  limit	  only	  two	  spliZngs	  survive	  
•  From	  flavor	  and	  momentum	  sum	  rules	  we	  get	  that	  the	  
spliZng	  is	  given	  by	  a	  plus	  funcYon	  

•  Keeping	  finite	  x	  correcYons	  one	  needs	  to	  keep	  all	  four	  
spliZngs.	  Delta	  funcYon	  pieces	  do	  not	  vanish.	  
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From this it is clear that the A-P equations uncouple for di↵erent partons. In the following section
we solve approximately the small-x evolution equations and show connections to the energy loss ap-
proach.

3.3 From QCD evolution to energy loss

In this section we show that in the small x limit the approximate solution to the evolution equation
for the fragmentation function is intimately connected with the energy-loss approach. In the small x
approximation the evolution equation for the fragmentation function looks like:
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In the equation above the splitting function P contains both vacuum or medium terms, and is given
by expressions in Eq. (50) and Eq. (51). Next we write out explicitly the evolution equation and
approximate it with z0 ⇡ 1 which follows from the fact that D(z,Q) is falling steeply with increasing
z:
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Now we use one more approximation, that the fragmentation function has a fixed steepness:
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1 + z
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D(z,Q) ⇡ (1� n(z))D(z,Q), (57)

and we will think of n as some number that depends on z but we neglect the dependence on Q. Using
the above two approximations we get the following simplified equation:
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EvoluYon	  in	  the	  small	  x	  limit	  

The equation above finally can be easily solved exactly:

D(z,Q) = e�
↵s
⇡ (n(z)�1)W D(z,Q

0

), (59)

where

W =

Z
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↵
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⌧

�E

E

�

z

, (60)

where we keep in mind that
⌦

�E

E

↵

z

depends on cuts and the limits of integration on x are 0 . . . 1� z.
Thus we get the final result for evolved fragmentation function:

D(z,Q) = e�(n(z)�1)h�E
E i

z D(z,Q
0

). (61)

Now let us discuss the dependence on z in n and �E/E. In practice the PDF’s will force the frag-

mentation function to be evaluated as some typical value of the parameter z = z
c

= pTp
s

⇣

e

y

x1
+ e

�y

x2

⌘

,

where y is the rapidity of the jet. As the p
T

increases, z
c

approaches 1. A typical shape of vacuum
fragmentation functions is well described by D(z) ⇠ zn1(1� z)n2 with typical values n

1

= �1/2 and
n
2

= 4. For such form the function n(z) equals:

n(z) = �d lnD(z)

d ln z
= �n

1

+ n
2

z

1� z
. (62)

Thus we are finding an interesting interplay as PDF’s force z ! 1. On one hand n(z) ! 1 but
on the other hand

⌦

�E

E

↵

z

! 0. This interplay has to be studied in detail. We do it below. This
motivates the following simplified prediction for the R

AA

nuclear modification factor:

R
AA

(p
T

) ⇡ e�ne↵(pT )h�E
E i,

n
e↵

(p
T

) = (n(z)� 1)

⌦

�E

E

↵

z

⌦

�E

E

↵ , (63)

where it is understood that z depends on p
T

via convolution with PDF’s in the total cross section.
This function for R

AA

with fixed flat number for n
e↵

= 4 is plotted in figure 2 for di↵erent assumptions
on the medium-induced splitting functions: Glauber, partonic, etc. In this figure we used n(z) = 5.
Strictly speaking we oversimplified life by plugging the energy loss into R

AA

. By comparing this plot
to the energy-loss plot and data we see a reasonable agreement of the shape and overall scale for the
Glauber curve.
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•  Expand	  the	  
convoluYon	  integral	  
around	  z’=1	  

•  Assume	  fixed	  
steepness	  n(z)	  

•  Solve	  RG	  equaYons	  
exactly	  

•  Steepness	  of	  PDF’s	  
forces	  the	  z	  to	  be	  a	  
funcYon	  of	  pT	  

Approximate	  analyYcal	  predicYon	  for	  	  
nuclear	  modificaYon	  factor:	  



Preliminary	  results	  

•  Preliminary	  results	  show	  that	  QCD	  evoluYon	  gives	  the	  correct	  shape	  for	  the	  
nuclear	  modificaYon	  factor	  

•  In	  reality	  neff	  is	  by	  itself	  a	  funcYon	  of	  pT.	  Needs	  to	  be	  checked	  how	  the	  shape	  is	  
affected	  

•  Straighrorward	  to	  include	  finite	  x	  correcYons.	  Work	  in	  progress.	  Stay	  tuned.	  
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Conclusions	  

•  We	  derived	  the	  virtual	  pieces	  of	  medium-‐induced	  
spliZng	  funcYons	  from	  sum	  rules	  

•  First	  results	  on	  RAA	  suppression	  from	  QCD	  
evoluYon	  are	  promising	  

•  This	  new	  method	  allows	  consistent	  inclusion	  of	  
finite	  x	  correcYons	  for	  the	  jet	  quenching	  
phenomenology	  

•  PuZng	  jet	  quenching	  phenomenology	  on	  more	  
solid	  theoreYcal	  grounds	  

	  


