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IntroducYon	
  



MoYvaYon	
  to	
  study	
  heavy	
  ion	
  collisions	
  

•  QCD	
  predicts	
  the	
  existence	
  of	
  Quark	
  Gluon	
  Plasma	
  (QGP)	
  
•  Recreate	
  in	
  laboratory	
  condiYons	
  the	
  ma`er	
  that	
  was	
  
present	
  in	
  the	
  Early	
  Universe,	
  microseconds	
  aber	
  the	
  Big	
  
Bang	
  

• To study the properties of Quark Gluon 
Plasma, predicted by QCD

• Connection to Early Universe (a few 
microseconds after the Big Bang)

Motivation to study heavy-ion collisions
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Experimental	
  faciliYes	
  
RHIC:	
  Au-­‐Au,	
  ENN=20-­‐200	
  GeV	
   LHC:	
  Pb-­‐Pb,	
  ENN=2.76	
  TeV	
  

•  LHC	
  has	
  confirmed	
  at	
  much	
  higher	
  energies	
  
the	
  qualitaYve	
  features	
  found	
  in	
  RHIC	
  data	
  

•  Jet	
  Quenching	
  clearly	
  observed	
  in	
  both	
  
experiments	
  



Jet	
  Quenching	
  

RAA(pT ) =
�AA(pT )

hN
coll

i�pp(pT )

Measuring	
  a	
  suppressed	
  nuclear	
  modificaYon	
  factor	
  is	
  
observaYonal	
  evidence	
  for	
  jet	
  quenching	
  in	
  heavy	
  ion	
  collisions	
  

Inclusive	
  producYon	
  of	
  jets	
  
LHC,	
  7	
  TeV	
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Figure 3: RAA in central (0–5%) and peripheral (70–80%) Pb–Pb collisions at
√
s
NN

= 2.76 TeV. Error bars

indicate the statistical uncertainties. The boxes contain the systematic errors in the data and the pT dependent

systematic errors on the pp reference, added in quadrature. The histograms indicate, for central collisions only,

the result for RAA at pT > 6.5 GeV/c using alternative pp references obtained by the use of the pp̄ measurement

at
√
s
NN

= 1.96 TeV [26] in the interpolation procedure (solid) and by applying NLO scaling to the pp data at 0.9

TeV (dashed) (see text). The vertical bars around RAA = 1 show the pT independent uncertainty on ⟨Ncoll⟩.
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Figure 4: Comparison of RAA in central Pb–Pb collisions at LHC to measurements at
√
s
NN

= 200 GeV by the

PHENIX [30] and STAR [31] experiments at RHIC. The error representation of the ALICE data is as in Fig. 3.

The statistical and systematic errors of the PHENIX data are shown as error bars and boxes, respectively. The

statistical and systematic errors of the STAR data are combined and shown as boxes. The vertical bars around

RAA = 1 indicate the pT independent scaling errors on RAA.

3

High energy heavy-ion collisions enable the study of strongly interacting matter under extreme condi-

tions. At sufficiently high collision energies Quantum-Chromodynamics (QCD) predicts that hot and

dense deconfined matter, commonly referred to as the Quark-Gluon Plasma (QGP), is formed. With the

advent of a new generation of experiments at the CERN Large Hadron Collider (LHC) [1] a new energy

domain is accessible to study the properties of this state.

Previous experiments at the Relativistic Heavy Ion Collider (RHIC) reported that hadron production

at high transverse momentum (pT ) in central (head-on) Au–Au collisions at a centre-of-mass energy

per nucleon pair
√
s
NN
of 200 GeV is suppressed by a factor 4–5 compared to expectations from an

independent superposition of nucleon-nucleon (NN) collisions [2, 3, 4, 5]. The dominant production

mechanism for high-pT hadrons is the fragmentation of high-pT partons that originate in hard scatterings

in the early stage of the nuclear collision. The observed suppression at RHIC is generally attributed to

energy loss of the partons as they propagate through the hot and dense QCD medium [6, 7, 8, 9, 10].

To quantify nuclear medium effects at high pT , the so called nuclear modification factor RAA is used.

RAA is defined as the ratio of the charged particle yield in Pb–Pb to that in pp, scaled by the number of

binary nucleon–nucleon collisions ⟨Ncoll⟩

RAA(pT ) =
(1/NAA

evt )d
2NAA

ch /d!dpT
⟨Ncoll⟩(1/Npp

evt )d2N
pp

ch /d!dpT
,

where ! = − ln(tan"/2) is the pseudo-rapidity and " is the polar angle between the charged particle
direction and the beam axis. The number of binary nucleon–nucleon collisions ⟨Ncoll⟩ is given by the
product of the nuclear overlap function ⟨TAA⟩ [11] and the inelastic NN cross section #NN

inel . If no nuclear

modification is present, RAA is unity at high pT .

At the larger LHC energy the density of the medium is expected to be higher than at RHIC, leading to a

larger energy loss of high pT partons. On the other hand, the less steeply falling spectrum at the higher

energy will lead to a smaller suppression in the pT spectrum of charged particles, for a given magnitude

of partonic energy loss [9, 10]. Both the value of RAA in central collisions as well as its pT dependence

may also in part be influenced by gluon shadowing and saturation effects, which in general decrease with

increasing x and Q2.

This Letter reports the measurement of the inclusive primary charged particle transverse momentum

distributions at mid-rapidity in central and peripheral Pb–Pb collisions at
√
s
NN

= 2.76 TeV by the ALICE
experiment [12]. Primary particles are defined as prompt particles produced in the collision, including

decay products, except those from weak decays of strange particles. The data were collected in the first

heavy-ion collision period at the LHC. A detailed description of the experiment can be found in [12].

For the present analysis, charged particle tracking utilizes the Inner Tracking System (ITS) and the Time

Projection Chamber (TPC) [13], both of which cover the central region in the pseudo-rapidity range

|! | < 0.9. The ITS and TPC detectors are located in the ALICE central barrel and operate in the 0.5 T
magnetic field of a large solenoidal magnet. The TPC is a cylindrical drift detector with two readout

planes on the endcaps. The active volume covers 85< r < 247 cm and −250< z< 250 cm in the radial
and longitudinal directions, respectively. A high voltage membrane at z = 0 divides the active volume

into two halves and provides the electric drift field of 400 V/cm, resulting in a maximum drift time of

94 µs.

The ITS is used for charged particle tracking and trigger purposes. It is composed of six cylindrical layers

of high resolution silicon tracking detectors with radial distances to the beam line from 3.9 to 43 cm. The

two innermost layers are the Silicon Pixel Detectors (SPD) with a total of 9.8 million pixels, read out by

1200 chips. Each chip provides a fast signal if at least one of its pixels is hit. The signals from the 1200

chips are combined in a programmable logic unit which supplies a trigger signal. The SPD contributes

to the minimum-bias trigger, if hits are detected on at least two chips on the outer layer. The SPD is

New LHC heavy ion data!

ALICE collaboration, 11-12/2010

the number of binary nucleon-nucleon collisions
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Data	
  from	
  RHIC	
  and	
  LHC	
  on	
  RAA	
  both	
  	
  
show	
  suppression	
  compared	
  to	
  1,	
  as	
  
a	
  strong	
  indicaYon	
  of	
  final	
  state	
  
effects	
  in	
  the	
  medium	
  created	
  in	
  
heavy	
  ion	
  collisions	
  



Jets	
  at	
  RHIC	
  vs	
  LHC	
  

Events	
  at	
  LHC	
  look	
  much	
  more	
  “je`y”	
  than	
  at	
  RHIC	
  even	
  by	
  eye	
  



• The medium is modeled with a finite number of 
scattering centers with static Debye-screened 
potential

H =
NX

n=1

H(q;x
n

) = 2⇡�(q0) v(q)
NX

n=1

eiqxn T a(R)⌦ T a(n)

v(q) =
4⇡↵s

q2z + q2 + µ2

Gyulassy, Wang, 94

• The momentum scaling of the 
exchange gluon is that of the 
Glauber gluon:  q(�2,�2,�)

Gyulassy-Wang model

⌦ ⌦ ⌦

⌦

⌦

⌦
⌦

⌦
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Gyulassy-Levai-Vitev reaction operator

Jet broadening

Radiative energy loss

algebraic classification of diagrams given in Ref. [ 27] to include virtual double Born amplitudes needed
in the inclusive case. Sec. III C summarizes the rules of diagrammatic calculus that emerge from detailed
analysis of diagrams in Appendix A through Appendix E.

In Sec. IV the new reaction operator formalism is developed. First, operators D̂n, V̂n in Eqs. (76,81) are
constructed from the diagrammatic rules. Products of these operators create partial sums of direct and
virtual amplitudes from the initial hard vacuum amplitude. Those partial sums, Eq. (60), form 3n classes
of diagrams that can be conveniently enumerated via a tensor notation and used to construct recursion
relations. In Sec. IV B, the reaction operator, R̂n = D̂†

nD̂n + V̂n + V̂ †
n , is constructed to relate the nth order

in opacity inclusive radiation probability distribution to classes of diagrams of order n − 1. The resulting
simple recursion relation, Eq. (97), can be solved in closed form. The general solution, Eq. (101), is suitable
for implementation in Monte Carlo event generators to study observable consequences of jet quenching in
nuclear collisions.

Color triviality of the inclusive distribution is proven to all orders algebraically with Eq. (101). The proof
is much simpler and more transparent than in the path integral formulations [ 13, 20, 34] and is not limited
to quark jets.

In Sec IV C a compact general expression for the momentum transfer averaged inclusive distributions,
Eq. (113) is derived. Appendix F provides an independent check of this solution through second order
starting from the amplitude iteration technique. Numerical results comparing angular distributions of gluons
up to the first three orders in opacity are presented in Sec. V A. Analytic and numerical results for the
angular integrated intensity distributions are compared in Sec. V B. It is shown that the induced intensity
is dominated by the first order in opacity result that is already quadratic in L.

A brief summary of these results up to second order in opacity was reported in Ref. [ 28]. The main result
of this paper is the new reaction operator derivation of the solutions, Eq. (101,113), that specify the inclusive
non-abelian radiation distribution to any order in opacity.

II. ELASTIC SCATTERING AND UNITARITY

To illustrate how the double Born graphs cancel direct contributions to preserve unitarity we review here
the simplest case of elastic scattering. Consider a wave packet j(p) of a parton prepared at time t0 and
localized at x⃗0 = (z0,x0) in color representation R. The (color matrix) amplitude to measure its momentum
as p⃗ in the absence of final state interactions is

M0 ≡ ieipx0j(p) × 1 . (7)

Multiplying |M0|2 by the invariant one particle phase space element d3p⃗/((2π)32|p⃗|) and taking the color
trace gives the unperturbed inclusive distribution of jets in the wave packet:

d3N0 = Tr |M0|2
d3p⃗

2|p⃗|(2π)3
= |j(p)|2

dR d3p⃗

2|p⃗|(2π)3
. (8)

Consider next the effect of final state elastic interactions with an array of static potentials localized at
x⃗i = (zi,bi) using

HI(t) =

∫

d3x⃗

N
∑

i=1

v(x⃗ − x⃗1)Ta(i)φ†(x⃗, t)Ta(R)D̂(t)φ(x⃗, t) , (9)

where D̂(t) = i
↔
∂t and TrTa(i)Tb(j) = δijδabC2(T )dT /dA. We will compute the three graphs in Fig. 1. The

first order, direct amplitude to scatter with one of the (static) target partons is

M1 = ieipx0

∫

d4q

(2π)4
j(p − q)∆(p − q)v(q)D(2p − q)

N
∑

j=1

eiq(xj−x0)Ta(j)Ta(R) , (10)

where ∆(p) ≡ (p2 + iϵ)−1 and D(p) = p0. The sum of double Born amplitudes in the same external potential
is

4

Gyulassy, Levai, Vitev, 00

meson dissociation, electromagnetic energy loss
Other applications:

• Using GLV approach both RAA and di-hadron(jet) 
imbalance have been successfully predicted

• We want to do similar calculations with effective 
theory Lagrangian SCETG

•

p

x0

J

k
µ, a

⌦ ⌦⌦ ⌦ ⌦ ⌦

p

x0

J

⌦ ⌦⌦ ⌦ ⌦ ⌦⌦⌦
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Energy	
  loss	
  approach,	
  valid	
  in	
  the	
  limit	
  x	
  <<	
  1	
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  spliZng	
  funcYons	
  

GO,	
  I.	
  Vitev	
  
	
  arXiv:1109.5619	
  (PLB)	
  	
  
	
  arXiv:1103.1074	
  (JHEP)	
  



SCETG	
  
Sob	
  Collinear	
  EffecYve	
  Theory	
  with	
  Glauber	
  Gluons	
  

•  Glauber	
  gluons	
  are	
  
needed	
  to	
  describe	
  t-­‐
channel	
  exchanges	
  
between	
  jets	
  and	
  
medium	
  quasi-­‐
parYcles	
  

•  Emission	
  of	
  collinear	
  
parYcles	
  is	
  described	
  
by	
  SCET	
  Lagrangian	
  

•  Allows	
  for	
  
calculaYons	
  beyond	
  
the	
  small	
  x	
  limit	
  

GO,	
  Vitev,	
  2011	
  



Results	
  
Rξ	
   A+	
   Hyb.	
  

W+	
   ✔	
   ✖	
   ✖	
  

Tn	
   ✖	
   ✔	
   ✖	
  

Gauge	
  invariance	
  
explicitly	
  demonstrated	
  

GO,	
  Vitev,	
  2011	
  

FactorizaYon	
  of	
  the	
  
medium-­‐induced	
  
spliZng	
  from	
  the	
  
producYon	
  proved	
  

All	
  four	
  medium-­‐
induced	
  spliZngs	
  
calculated	
  beyond	
  
small	
  x	
  approximaYon	
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Jet	
  quenching	
  from	
  evoluYon	
  

•  With	
  this	
  scale	
  choice	
  the	
  Hard	
  funcYon	
  need	
  not	
  be	
  evolved.	
  The	
  PDF’s	
  
and	
  the	
  FragmentaYon	
  funcYon	
  need	
  to	
  be	
  evolved	
  from	
  low	
  to	
  high	
  scale	
  

•  Because	
  medium-­‐induced	
  spliZng	
  is	
  a	
  final	
  state	
  effect,	
  PDF’s	
  need	
  to	
  be	
  
evolved	
  with	
  vacuum	
  (Altarelli-­‐Parisi)	
  spliZng	
  funcYons	
  

•  The	
  FragmentaYon	
  funcYon	
  needs	
  to	
  be	
  evolved	
  with	
  medium-­‐induced	
  
spliZng	
  funcYon	
  

•  Can	
  we	
  predict	
  RAA	
  suppression	
  from	
  QCD	
  evoluYon?	
  
•  This	
  method	
  will	
  allow	
  to	
  include	
  consistently	
  inclusion	
  of	
  finite	
  x	
  

correcYons	
  

⇤QCD

pT H	
  

f,	
  D	
  

The	
  simplest	
  choice	
  is:	
  
	
  

µ = pT

RAA(pT ) =
H(µ, pT )⌦ f(µ)⌦ f(µ)⌦Dmed(µ)

H(µ, pT )⌦ f(µ)⌦ f(µ)⌦D(µ)



Collinear	
  spliZng	
  funcYons	
  

•  The	
  collinear	
  spliZng	
  funcYons	
  are	
  process	
  independent	
  
•  The	
  virtual	
  contribuYon	
  is	
  extracted	
  from	
  momentum	
  and	
  

flavor	
  conservaYon	
  sum	
  rules	
  
	
  
	
  

	
  

collinear	
  gluon	
  

d�n d�n+1

DGLAP	
  
Gribov,	
  Lipatov,	
  1972	
  
Altarelli,	
  Parisi,	
  1977	
  
Dokshitzer,	
  1977	
  
	
  	
  

(k2
⊥ < 0) (k⊥ · p = k⊥ · n = 0) or, equivalently, how the collinear direction is approached.

In the small-k⊥ limit (i.e. neglecting terms that are less singular than 1/k2
⊥), the square of

the matrix element in Eq. (1) fulfils the following factorization formula [1]

|Ma1,a2,...(p1, p2, . . .)|
2 ≃

2

s12
4πµ2ϵαS T ss′

a,...(p, . . .) P̂ ss′

a1a2
(z, k⊥; ϵ) , (7)

where µ is the dimensional-regularization scale. The spin-polarization tensor T ss′

a,...(p, . . .) is
obtained by replacing the partons a1 and a2 on the right-hand side of Eq. (2) with a single
parton denoted by a. This parton carries the quantum numbers of the pair a1 + a2 in the
collinear limit. In other words, its momentum is pµ and its other quantum numbers (flavour,
colour) are obtained according to the following rule: anything + gluon gives anything and
quark + antiquark gives gluon.

The kernel P̂a1a2
in Eq. (7) is the d-dimensional Altarelli–Parisi splitting function [21]. It

depends not only on the momentum fraction z involved in the collinear splitting a → a1+a2,
but also on the transverse momentum k⊥ and on the helicity of the parton a in the matrix
element Mc,...;s,...

a,... (p, . . .). More precisely, P̂a1a2
is in general a matrix acting on the spin

indices s, s′ of the parton a in the spin-polarization tensor T ss′

a,...(p, . . .). Because of these
spin correlations, the spin-average square of the matrix element Mc,...;s,...

a,... (p, . . .) cannot be
simply factorized on the right-hand side of Eq. (7).

The explicit expressions of P̂a1a2
, for the splitting processes

a(p) → a1(zp + k⊥ + O(k2
⊥)) + a2((1 − z)p − k⊥ + O(k2

⊥)) , (8)

depend on the flavour of the partons a1, a2 and are given by

P̂ ss′

qg (z, k⊥; ϵ) = P̂ ss′

q̄g (z, k⊥; ϵ) = δss′ CF

[
1 + z2

1 − z
− ϵ(1 − z)

]

, (9)

P̂ ss′

gq (z, k⊥; ϵ) = P̂ ss′

gq̄ (z, k⊥; ϵ) = δss′ CF

[
1 + (1 − z)2

z
− ϵz

]

, (10)

P̂ µν
qq̄ (z, k⊥; ϵ) = P̂ µν

q̄q (z, k⊥; ϵ) = TR

[

−gµν + 4z(1 − z)
kµ
⊥kν

⊥

k2
⊥

]

, (11)

P̂ µν
gg (z, k⊥; ϵ) = 2CA

[

−gµν
(

z

1 − z
+

1 − z

z

)
− 2(1 − ϵ)z(1 − z)

kµ
⊥kν

⊥

k2
⊥

]

, (12)

where the SU(Nc) QCD colour factors are

CF =
N2

c − 1

2Nc

, CA = Nc , TR =
1

2
, (13)

and the spin indices of the parent parton a have been denoted by s, s′ if a is a fermion and
µ, ν if a is a gluon.

Note that when the parent parton is a fermion (cf. Eqs. (9) and (10)) the splitting
function is proportional to the unity matrix in the spin indices. Thus, in the factorization

3

formula (7), spin correlations are effective only in the case of the collinear splitting of a
gluon. Owing to the k⊥-dependence of the gluon splitting functions in Eqs. (11) and (12),
these spin correlations produce a non-trivial azimuthal dependence with respect to the
directions of the other momenta in the factorized matrix element.

Equations (9)–(12) lead to the more familiar form of the d-dimensional splitting func-
tions only after average over the polarizations of the parton a. The d-dimensional average
is obtained by means of the factors in Eqs. (3) and (4). Denoting by ⟨P̂a1a2

⟩ the average of
P̂a1a2

over the polarizations of the parent parton a, we have:

⟨P̂qg(z; ϵ)⟩ = ⟨P̂q̄g(z; ϵ)⟩ = CF

[
1 + z2

1 − z
− ϵ(1 − z)

]

, (14)

⟨P̂gq(z; ϵ)⟩ = ⟨P̂gq̄(z; ϵ)⟩ = CF

[
1 + (1 − z)2

z
− ϵz

]

, (15)

⟨P̂qq̄(z; ϵ)⟩ = ⟨P̂q̄q(z; ϵ)⟩ = TR

[

1 −
2z(1 − z)

1 − ϵ

]

, (16)

⟨P̂gg(z; ϵ)⟩ = 2CA

[
z

1 − z
+

1 − z

z
+ z(1 − z)

]
. (17)

In the rest of the paper we are interested in the collinear limit at O(α2
S). In this case

three parton momenta can simultaneously become parallel. Denoting these momenta by
p1, p2 and p3, their most general parametrization is

pµ
i = xip

µ + kµ
⊥i −

k2
⊥i

xi

nµ

2p · n
, i = 1, 2, 3 , (18)

where, as in Eq. (6), the light-like vector pµ denotes the collinear direction and the auxiliary
light-like vector nµ specifies how the collinear direction is approached (k⊥i ·p = k⊥i ·n = 0).
Note that no other constraint (e.g.

∑
i xi = 1 or

∑
i k⊥i = 0) is imposed on the longitudinal

and transverse variables xi and k⊥i. Thus, we can easily consider any (asymmetric) collinear
limit at once.

In the triple-collinear limit, the matrix element squared |Ma1,a2,a3,...(p1, p2, p3, . . .)|2 has
the singular behaviour |Ma1,a2,a3,...(p1, p2, p3, . . .)|2 ∼ 1/(ss′), where s and s′ can be either
two-particle (sij = (pi + pj)2) or three-particle (s123 = (p1 + p2 + p3)2) sub-energies. More
precisely, it can be shown [19, 20] that the matrix element squared still fulfils a factorization
formula analogous to Eq. (7), namely

|Ma1,a2,a3,...(p1, p2, p3, . . .)|
2 ≃

4

s2
123

(4πµ2ϵαS)
2 T ss′

a,...(p, . . .) P̂ ss′

a1a2a3
. (19)

Likewise in Eq. (7), the spin-polarization tensor T ss′

a,...(p, . . .) is obtained by replacing the
partons a1, a2 and a3 with a single parent parton, whose flavour a is determined (see Sect. 3)
by flavour conservation in the splitting process a → a1 + a2 + a3.

4

q ! gq
g ! gg
g ! qq̄



EvoluYon	
  equaYons	
  

The evolution equations are given by standard Altarelli-Parisi equations:

df
q

(z,Q)

d lnQ
=

↵
s

(Q2)

⇡

Z

1

z

dz0

z0

n

P
q!qg

(z0, Q)f
q

⇣ z

z0
, Q

⌘

+ P
g!qq̄

(z0, Q)f
g

⇣ z

z0
, Q

⌘o

, (45)

df
q̄

(z,Q)

d lnQ
=

↵
s

(Q2)

⇡

Z

1

z

dz0

z0

n

P
q!qg

(z0, Q)f
q̄

⇣ z

z0
, Q

⌘

+ P
g!qq̄

(z0, Q)f
g

⇣ z

z0
, Q

⌘o

, (46)

df
g

(z,Q)

d lnQ
=

↵
s

(Q2)

⇡

Z

1

z

dz0

z0

(

P
g!gg

(z0, Q)f
g

⇣ z

z0
, Q

⌘

+P
q!gq

(z0, Q)
⇣

f
q

⇣ z

z0
, Q

⌘

+ f
q̄

⇣ z

z0
, Q

⌘⌘

)

. (47)

The complete medium-induced splitting functions look like:

P
(1)

i

(z,Q) = P vac

i

(z) [1 + g
i

(x,Q,L, µ)] , (48)

where the individual terms with all the plus prescriptions and virtual pieces are summarized in
sections 2, 3. These evolution equations have to be solved with initial conditions for parton densities
for quarks, anti-quarks and gluons to equal �(1� z) at some infrared scale ⇠ fewGeV. The resulting
so-called PDF’s at the hard scattering scale Q = p

T

look like f
i/j

(z, p
T

), and have an intuitive
interpretation: probability of the parton i to be found in the parton j at the momentum transfer
scale Q = p

T

. For example f
g/q

(z, p
T

) is the solution for the gluon density from the evolution
equations with the initial conditions f

q

(z, µ
IR

) = �(1� z), f
q̄

(z, µ
IR

) = f
g

(z, µ
IR

) = 0, and so forth.
As a result of solving the A-P evolution equations we get the full LL series resummed by:

�(i)(p
T

) =
X

j=q,q̄,g

Z

1

0

dz �(j)

⇣p
T

z

⌘

f
i/j

(z, p
T

), (49)

where i = q, q̄, g. It is straightforward to check, that by plugging in the lowest order solutions of
the evolution equations, into the equations above, we reproduce Eq. (42), a nice sanity check. In
addition, the equation above when combined properly with the evolution equations contains all the
leading order logarithms resummed. This should be more relevant for the LHC phenomenology where
the energies are higher than RHIC.

TODO: Check if there are additional factors from reversing A-P equations and the
cross section formulas from initial state to the final state.

Small x approximation

The coupled Altarelli-Parisi evolution equations Eq. (45)-Eq. (47) simplify tremendously for the
small x approximation and become uncoupled. To see this we present the small x approximation of
medium-induced splitting functions:

P
q!qg

=
2C

F

x
+

+

✓

2C
F

x
g[x,Q,L, µ]

◆

+

, (50)
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The	
  form	
  of	
  the	
  evoluYon	
  equaYons	
  is	
  same	
  as	
  the	
  
tradiYonal	
  Altareli-­‐Parisi	
  evoluYon	
  equaYons:	
  

For	
  the	
  FragmentaYon	
  funcYon	
  we	
  need	
  to	
  include	
  in	
  
addiYon	
  to	
  vacuum	
  evoluYon,	
  the	
  medium-­‐induced	
  
spliZng	
  terms.	
  	
  
Similarly	
  to	
  the	
  vacuum	
  case	
  the	
  virtual	
  pieces	
  we	
  
determine	
  from	
  the	
  momentum	
  and	
  flavor	
  sum	
  rules	
  

P=Pvac+Pmed	
  

Real	
  emission	
  
calculated	
  in	
  
GO,	
  Vitev,	
  2011	
  



Small	
  x	
  limit	
  of	
  spliZng	
  funcYons	
  

P
q!qg

=
2C

F

x
+

+

✓

2C
F

x
g[x,Q,L, µ]

◆

+

, (50)

P
g!gg

=
2C

A

x
+

+

✓

2C
A

x
g[x,Q,L, µ]

◆

+

, (51)

P
g!qq̄

= 0, (52)

P
q!gq

= 0, (53)

where the function g equals to:

g[x,Q,L, µ] =

Z

d�z

�
g

(�z)
d2q?

1

�
el

d�medium

el

d2q?

2k? ·q?
(k? � q?)2



1� cos
(k? � q?)2

xp+
0

�z

�

. (54)

From this it is clear that the A-P equations uncouple for di↵erent partons. In the following section
we solve approximately the small-x evolution equations and show connections to the energy loss ap-
proach.

3.3 From QCD evolution to energy loss

In this section we show that in the small x limit the approximate solution to the evolution equation
for the fragmentation function is intimately connected with the energy-loss approach. In the small x
approximation the evolution equation for the fragmentation function looks like:

dD(z,Q)

d lnQ
=

↵
s

⇡

Z

1

z

dz0

z0
�

P (z0, Q)
�

+

D(z/z0, Q). (55)

In the equation above the splitting function P contains both vacuum or medium terms, and is given
by expressions in Eq. (50) and Eq. (51). Next we write out explicitly the evolution equation and
approximate it with z0 ⇡ 1 which follows from the fact that D(z,Q) is falling steeply with increasing
z:

dD(z,Q)

d lnQ
=

↵
s

⇡

Z

1

z

dz0

z0
P (z0, Q)

✓

1

z0
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◆

⇡ ↵
s

⇡

✓

1 + z
@

@z

◆

D(z,Q)

Z

1

z

dz0 (1� z0)P (z0, Q). (56)

Now we use one more approximation, that the fragmentation function has a fixed steepness:

✓

1 + z
@

@z

◆

D(z,Q) ⇡ (1� n(z))D(z,Q), (57)

and we will think of n as some number that depends on z but we neglect the dependence on Q. Using
the above two approximations we get the following simplified equation:

d lnD(z,Q)

d lnQ
= �↵

s

⇡
(n(z)� 1)

Z

1

z

dz0 (1� z0)P (z0, Q). (58)
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From this it is clear that the A-P equations uncouple for di↵erent partons. In the following section
we solve approximately the small-x evolution equations and show connections to the energy loss ap-
proach.

3.3 From QCD evolution to energy loss
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In the equation above the splitting function P contains both vacuum or medium terms, and is given
by expressions in Eq. (50) and Eq. (51). Next we write out explicitly the evolution equation and
approximate it with z0 ⇡ 1 which follows from the fact that D(z,Q) is falling steeply with increasing
z:
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Now we use one more approximation, that the fragmentation function has a fixed steepness:

✓
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@

@z

◆

D(z,Q) ⇡ (1� n(z))D(z,Q), (57)

and we will think of n as some number that depends on z but we neglect the dependence on Q. Using
the above two approximations we get the following simplified equation:
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  small	
  x	
  limit	
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From this it is clear that the A-P equations uncouple for di↵erent partons. In the following section
we solve approximately the small-x evolution equations and show connections to the energy loss ap-
proach.

3.3 From QCD evolution to energy loss

In this section we show that in the small x limit the approximate solution to the evolution equation
for the fragmentation function is intimately connected with the energy-loss approach. In the small x
approximation the evolution equation for the fragmentation function looks like:
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=
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dz0
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P (z0, Q)
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+

D(z/z0, Q). (55)

In the equation above the splitting function P contains both vacuum or medium terms, and is given
by expressions in Eq. (50) and Eq. (51). Next we write out explicitly the evolution equation and
approximate it with z0 ⇡ 1 which follows from the fact that D(z,Q) is falling steeply with increasing
z:
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d lnQ
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1 + z
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Now we use one more approximation, that the fragmentation function has a fixed steepness:

✓

1 + z
@

@z

◆

D(z,Q) ⇡ (1� n(z))D(z,Q), (57)

and we will think of n as some number that depends on z but we neglect the dependence on Q. Using
the above two approximations we get the following simplified equation:

d lnD(z,Q)

d lnQ
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⇡
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dz0 (1� z0)P (z0, Q). (58)
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The equation above finally can be easily solved exactly:

D(z,Q) = e�
↵s
⇡ (n(z)�1)W D(z,Q

0

), (59)

where

W =

Z

Q

Q0

dk

k

Z

1

z

dz0(1� z0)P (z0, k)

=

Z

d�

2⇡

Z

Q

Q0

dk

k

Z

1

z

dz0(1� z0)
2⇡2

↵
s

k2
dN

dxd2k?
(1� z, k)

=
⇡

↵
s

Z

d2k?

Z

1

z

dz0(1� z0)
dN

dxd2k?
(1� z, k)

=
⇡

↵
s

Z

d2k?

Z

1�z

0

dxx
dN

dxd2k?

=
⇡

↵
s

⌧

�E

E

�

z

, (60)

where we keep in mind that
⌦

�E

E

↵

z

depends on cuts and the limits of integration on x are 0 . . . 1� z.
Thus we get the final result for evolved fragmentation function:

D(z,Q) = e�(n(z)�1)h�E
E i

z D(z,Q
0

). (61)

Now let us discuss the dependence on z in n and �E/E. In practice the PDF’s will force the frag-

mentation function to be evaluated as some typical value of the parameter z = z
c

= pTp
s

⇣

e

y

x1
+ e

�y

x2

⌘

,

where y is the rapidity of the jet. As the p
T

increases, z
c

approaches 1. A typical shape of vacuum
fragmentation functions is well described by D(z) ⇠ zn1(1� z)n2 with typical values n

1

= �1/2 and
n
2

= 4. For such form the function n(z) equals:

n(z) = �d lnD(z)

d ln z
= �n

1

+ n
2

z

1� z
. (62)

Thus we are finding an interesting interplay as PDF’s force z ! 1. On one hand n(z) ! 1 but
on the other hand

⌦

�E

E

↵

z

! 0. This interplay has to be studied in detail. We do it below. This
motivates the following simplified prediction for the R

AA

nuclear modification factor:

R
AA

(p
T

) ⇡ e�ne↵(pT )h�E
E i,

n
e↵

(p
T

) = (n(z)� 1)

⌦

�E

E

↵

z

⌦

�E

E

↵ , (63)

where it is understood that z depends on p
T

via convolution with PDF’s in the total cross section.
This function for R

AA

with fixed flat number for n
e↵

= 4 is plotted in figure 2 for di↵erent assumptions
on the medium-induced splitting functions: Glauber, partonic, etc. In this figure we used n(z) = 5.
Strictly speaking we oversimplified life by plugging the energy loss into R

AA

. By comparing this plot
to the energy-loss plot and data we see a reasonable agreement of the shape and overall scale for the
Glauber curve.
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•  Expand	
  the	
  
convoluYon	
  integral	
  
around	
  z’=1	
  

•  Assume	
  fixed	
  
steepness	
  n(z)	
  

•  Solve	
  RG	
  equaYons	
  
exactly	
  

•  Steepness	
  of	
  PDF’s	
  
forces	
  the	
  z	
  to	
  be	
  a	
  
funcYon	
  of	
  pT	
  

Approximate	
  analyYcal	
  predicYon	
  for	
  	
  
nuclear	
  modificaYon	
  factor:	
  



Preliminary	
  results	
  

•  Preliminary	
  results	
  show	
  that	
  QCD	
  evoluYon	
  gives	
  the	
  correct	
  shape	
  for	
  the	
  
nuclear	
  modificaYon	
  factor	
  

•  In	
  reality	
  neff	
  is	
  by	
  itself	
  a	
  funcYon	
  of	
  pT.	
  Needs	
  to	
  be	
  checked	
  how	
  the	
  shape	
  is	
  
affected	
  

•  Straighrorward	
  to	
  include	
  finite	
  x	
  correcYons.	
  Work	
  in	
  progress.	
  Stay	
  tuned.	
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Conclusions	
  

•  We	
  derived	
  the	
  virtual	
  pieces	
  of	
  medium-­‐induced	
  
spliZng	
  funcYons	
  from	
  sum	
  rules	
  

•  First	
  results	
  on	
  RAA	
  suppression	
  from	
  QCD	
  
evoluYon	
  are	
  promising	
  

•  This	
  new	
  method	
  allows	
  consistent	
  inclusion	
  of	
  
finite	
  x	
  correcYons	
  for	
  the	
  jet	
  quenching	
  
phenomenology	
  

•  PuZng	
  jet	
  quenching	
  phenomenology	
  on	
  more	
  
solid	
  theoreYcal	
  grounds	
  

	
  


