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Introduction



Motivation to study heavy ion collisions
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* QCD predicts the existence of Quark Gluon Plasma (QGP)

* Recreate in laboratory conditions the matter that was

present in the Early Universe, microseconds after the Big
Bang



Experimental facilities

RHIC: Au-Au, E,=20-200 GeV LHC: Pb-Pb, E,,=2.76 TeV

* LHC has confirmed at much higher energies
the qualitative features found in RHIC data

* Jet Quenching clearly observed in both
experiments



Jet Quenching
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Inclusive production of jets

LHC, 7 TeV
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Measuring a suppressed nuclear modification factor is

observational evidence for jet quenching in heavy ion collisions



Jet Quenching

ALICE collaboration, | 1-12/2010
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Data from RHIC and LHC on R, both
show suppression compared to 1, as —
a strong indication of final state e
effects in the medium created in

heavy ion collisions




Jets at RHIC vs LHC

(1S Experiment at|LHC, CERN
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Events at LHC look much more “jetty” than at RHIC even by eye



Gyulassy-VWang model
Gyulassy, Wang, 94

® The medium is modeled with a finite number of
scattering centers with static Debye-screened

potential
&

N
= Z (q; ) = 276(q Z e T(R) @ T*(n)

n=1

4o
¢ +q*+p?

v(q) =

® The momentum scaling of the
exchange gluon is that of the
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Gyulassy-Levai-Vitev reaction operator
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Other applications: s p
meson dissociation, electromagnetic energy loss @ 1 1 1]
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® Using GLV approach both Raa and di-hadron(jet)
imbalance have been successfully predicted

Energy loss approach, valid in the limit x << 1



Medium-induced splitting functions

GO, I. Vitev arXiv:1103.1074 (JHEP)
arXiv:1109.5619 (PLB)



SCET,.

Soft Collinear Effective Theory with Glauber Gluons

GO, Vitev, 2011
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* Glauber gluons are
needed to describe t-
channel exchanges
between jets and
medium quasi-
particles

e Emission of collinear
particles is described
by SCET Lagrangian

e Allows for
calculations beyond
the small x limit
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Results

GO, Vitev, 2011
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Jet Quenching from QCD evolution

with, Z. Kang, R. Lashof-Regas, P. Saad, I. Vitev (in progress)



Jet quenching from evolution
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e With this scale choice the Hard function need not be evolved. The PDF’s
and the Fragmentation function need to be evolved from low to high scale

 Because medium-induced splitting is a final state effect, PDF’s need to be
evolved with vacuum (Altarelli-Parisi) splitting functions

 The Fragmentation function needs to be evolved with medium-induced
splitting function
e Can we predict R,, suppression from QCD evolution?

* This method will allow to include consistently inclusion of finite x
corrections



Collinear splitting functions

K & collinear gluon gthP Linat 1979
ribov, Lipatov,
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* The collinear splitting functions are process independent

e The virtual contribution is extracted from momentum and
flavor conservation sum rules
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Evolution equations

The form of the evolution equations is same as the
traditional Altareli-Parisi evolution equations:
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For the Fragmentation function we need to include in
addition to vacuum evolution, the medium-induced
splitting terms.

Similarly to the vacuum case the virtual pieces we
determine from the momentum and flavor sum rules
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Real emission
calculated in
GO, Vitev, 2011



Small x limit of splitting functions
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* |In the small x limit only two splittings survive
* From flavor and momentum sum rules we get that the
splitting is given by a plus function

* Keeping finite x corrections one needs to keep all four
splittings. Delta function pieces do not vanish.



Evolution in the small x limit

Expand the
convolution integral
around z'=1

Assume fixed
steepness n(z)

Solve RG equations
exactly

Steepness of PDF’s
forces the zto be a
function of p;

Y
Approximate analytical prediction for <AE>
nuclear modification factor: =




Preliminary results

Energy loss approach: QCD evolution (n 4=4):
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ _ Raa from QCD evolution (quark jet)
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* Preliminary results show that QCD evolution gives the correct shape for the
nuclear modification factor

* Inreality n is by itself a function of p;. Needs to be checked how the shape is
affected

* Straightforward to include finite x corrections. Work in progress. Stay tuned.



Conclusions

We derived the virtual pieces of medium-induced
splitting functions from sum rules

First results on R,, suppression from QCD
evolution are promising

This new method allows consistent inclusion of
finite x corrections for the jet quenching
phenomenology

Putting jet quenching phenomenology on more
solid theoretical grounds



