Quark-Gluon Discrimination and Pile Up at CMS

Francesco Pandolfi ETH Zürich

on behalf of the CMS collaboration

Jet Structure Through Particle Flow

- Particle Flow: reconstructing all stable particles in event
 - Using all detectors in unison
- Powerful tool for jet structure
 - Particle-level information
 - Full access to jet shape

Quark-Gluon Discrimination

It's Not Just 'Jets'

- Most physics analyses flavour specific
 - eg. signal is quarks, background is gluons
- Quarks and gluons have different hadronization
 - Gluon jets: higher multiplicities, wider, more uniform energy fragmentation

Searching for Discriminating Variables

- Quark jets:
 - Less constituents
 - Narrower cone
 - Asymmetrical energy sharing between constituents

MULTIPLICITY VARIABLES

- Charged Multiplicity
- Neutral Multiplicity
- Total Multiplicity

WIDTH VARIABLES

- RMS of PFC and idate η - ϕ spread (σ)
- Major axis of η - ϕ matrix (σ_1)
- Minor axis of η-φ matrix (σ₂)

ENERGY SHARING VARIABLES

- Pull
- R
- *p*_TD

- Less constituents
- Narrower cone --
- Asymmetrical energy sharing between constituents

MULTIPLICITY VARIABLES

- Charged Multiplicity
- Neutral Multiplicity
- Total Multiplicity

WIDTH VARIABLES

- RMS of PFCandidate η-φ spread (σ)
- Major axis of η - ϕ matrix (σ_1)
- Minor axis of η-φ matrix (σ₂)

ENERGY SHARING VARIABLES

- Pull
- R
- p_TD

Francesco Pandolfi

How the Variables Are Defined

CONSTITUENT AND A DECEMBER OF A DECEMBER OFO

MULTIPLICITY VARIABLES

- Charged Multiplicity
- Neutral Multiplicity
- Total Multiplicity

WIDTH VARIABLES

- RMS of PFCandidate η-φ spread (σ)
- Major axis of η-φ matrix (σ₁)
- Minor axis of η-φ matrix (σ₂)

ENERGY SHARING VARIABLES

- Pull
- R
- p_TD

Francesco Pandolfi

from Particle Flow

How the Variables Are Defined

and $\sigma = \sqrt{\sigma_1^2 + \sigma_2^2}$

▶ ŋ

MULTIPLICITY VARIABLES

- Charged Multiplicity
- Neutral Multiplicity
- Total Multiplicity

WIDTH VARIABLES

- RMS of PFCandidate η-φ spread (σ)
- Major axis of η - ϕ matrix (σ_1)
- Minor axis of η-φ matrix (σ₂)

ENERGY SHARING VARIABLES

- Pull
- R
- p_TD

from Particle Flow

How the Variables Are Defined

MULTIPLICITY VARIABLES

- Charged Multiplicity
- Neutral Multiplicity
- Total Multiplicity

WIDTH VARIABLES

- RMS of PFC and idate η - ϕ spread (σ)
- Major axis of η - ϕ matrix (σ_1)
- Minor axis of η-φ matrix (σ₂)

ENERGY SHARING VARIABLES

• Pull -

$$\left|\vec{t}\right| = \left|\frac{\sum_{i} p_{\mathrm{T},i}^2 |r_i| \vec{r_i}}{\sum_{i} p_{\mathrm{T},i}^2}\right|$$

from Particle Flow

$$\frac{p_{\mathrm{T},i}^2 |r_i| \vec{r_i}}{\sum_i p_{\mathrm{T},i}^2} | \text{ with } \vec{r_i} = (\Delta \eta_i, \ \Delta \phi_i)$$

• $R = p_{T,i} (max) / \sum p_{T,i}$

•
$$p_T D$$
 $p_T D = \frac{\sqrt{\sum_i p_{T,i}^2}}{\sum_i p_{T,i}}$

Francesco Pandolfi

Three Variables for the Discriminator

MULTIPLICITY VARIABLES

- Charged Multiplicity
- Neutral Multiplicity
- Total Multiplicity

WIDTH VARIABLES

- RMS of PFCandidate η-φ spread (σ)
- Major axis of η-φ matrix (σ₁)
- Minor axis of η-φ matrix (σ₂)

ENERGY SHARING VARIABLES

- Pull
- R
- p_TD

Three Variables for the Discriminator

MULTIPLICITY VARIABLES

- Charged Multiplicity
- Neutral Multiplicity
- Total Multiplicity

WIDTH VARIABLES

- RMS of PFCandidate η-φ spread (σ)
- Major axis of η-φ matrix (σ₁)
- Minor axis of η-φ matrix (σ₂)

ENERGY SHARING VARIABLES

- Pull
- R
- p_TD

Francesco Pandolfi

Variables Look Good in the Data

- Control sample: Z + (one) jet
 - Quark enriched
 - Good data/MC agreement

Building the Discriminator

Some Discrepancies in the Gluons

- Observe discrepancy in dijet control sample
 - With high gluon fraction

Smearing the MC to Match Data

Nature Lies Between Pythia6 and Herwig++

Pile-Up Identification

- Current LHC running: high-pileup conditions
 - Average of 23 extra interactions (and up to 40!)
- Additional collisions produce soft jets
 - But can overlap (combinatorics!)
 - Resulting jets can have $p_T > 25$ GeV
- Pile-up jet ID
 - **Crucial** for analyses with $low-p_T$ jets

Identifying Pile Up Jets

- Pile up jets mainly overlap of soft jets from extra interactions
- Two main characteristics:
 - Tracks incompatible with primary vertex

Again making use of powerful Particle Flow information

- Clustered particles more diffuse
- Selected 12 variables (scanned >80)
 - 4 **track** variables ($|\eta| < 2.5$)
 - 8 shape variables ($|\eta| < 5$)

The Track-Based Variables

CCNS units and the second seco

- Four track variables ($|\eta| < 2.5$):
 - β: energy fraction of tracks from primary vertex
 - β*: energy fraction of tracks from other vertexes
 - dz: z-distance between primary vertex and hardest track
 - Nvertexes
- * Some disagreement in β^* (and β)
 - Due to known issue in simulation

The Shape Variables

- Twelve track variables ($|\eta| < 5$):
 - **(ΔR²)**: η-φ RMS of candidates (similar to σ in quark-gluon)
 - A < (ΔR) < A+0.1: fractional p_T sum of particles in a given annulus (all five annuli from 0 to 0.5 used)
 - Ncharged: charged multiplicity
 - Nneutrals: neutral multiplicity
 - *p***_TD**: as in quark-gluon

Building the Pile-Up Discriminator

- Twelve variables fed to an MVA (BDT)
 - Trained separately in four |η| bins
 - Tested on Z→µµ data
- Best discrimination in central region
- * Some disagreements in endcap region
 - From incorrect simulation of **out-of-time pile-up**
 - Known problem, fixed in later releases
 - Will take into account with scale factors

Measuring the Efficiency in the Data

- ◆ Derived on Z→µµ control sample
- Use Δφ(Z-jet) distribution
 - Real jets **peak** at $\Delta \phi = \pi$
 - Pile up is **flat** in Δφ

with $k = (\pi - 2.5) / 1.5$

Performance on Quarks and Gluons

Francesco Pandolfi

An Application: Jet Veto

- An example: jet veto in Z→µµ analysis
 - Without pile up ID: large dependence on pile up for $p_T < 40$ GeV
 - With pile up ID: no dependence

Conclusions

- Successfully employed quark-gluon separation and pile up ID in CMS analyses
- Quark-gluon separation
 - Multiplicity, width, energy sharing
 - Simple likelihood with three inputs, up to $|\eta| = 5$
 - Quarks well modeled by MC, gluons not so well
- Pile up jet identification
 - Track- and shape-based variables
 - Implemented as a **BDT**, also up to $|\eta| = 5$
 - In $|\eta| < 2.5$: >99% signal efficiency, ~90% BG rejection

Backup Slides

Quark-Gluon: Variable Definitions

The Other RoC Curves

The Other Data/MC Comparisons

How the QG Smearing Really Works

- Take likelihood (LD) distributions for quarks and gluons separately
- Define smearing function: $g(x, a, b) = \tanh(a \operatorname{arctanh}(2x-1)+b)/2 + \frac{1}{2}$
 - Changes value of LD on jet-per-jet basis
 - Not a reweighting
 - Reduces LD discrimination
- Smear until data and MC agree
 - χ^2 minimization

Pile Up ID: the Four Track Variables

Pile Up ID: the Other Shape Variables

