

Searches for heavy resonances in the W/Z-tagged di-jet spectrum with CMS

Petar Maksimovic Johns Hopkins

Boston Jet Workshop 2014 CMS Experiment at LHC, CERN Data recorded: Sun Oct 7 17:44:20 2012 EDT Run/Event: 204601 / 869076077 Lumi section: 752 invariant mass = 2163.7

Models considered

- We search for two types of heavy resonances:
 - Excited quarks: $q^* \to qW$ and $q^* \to qZ$
 - $X \to WW$, $X \to ZZ$, and $X \to WZ$
- Many options for $X \to VV$ (V = W, Z):
 - Randall-Sundrum Gravitons $G_{\rm RS} \rightarrow WW, ZZ$
 - Bulk-graviton with enhanced coupling to WW or ZZ
 - $W' \to WZ$
 - with W' couplings from the extended gauge model
 - Low-Scale Technicolor, $\ \ \rho_{\mathrm{TC}}
 ightarrow WZ$
 - SM Higgs-like boson, $H \rightarrow WW, ZZ$ (in addition to 125 GeV Higgs, as a reference at high mass)

Models considered

- We search for two types of heavy resonances:
 - Excited quarks: $q^* \rightarrow qW$ and $q^* \rightarrow qZ$
 - $X \to WW$, $X \to ZZ$, and $X \to WZ$
- Many options for $X \to VV \ (V = W, Z)$:
 - Randall-Sundrum Gravitons $G_{RS} \rightarrow WW, ZZ$
 - Bulk-graviton with enhanced coupling to WW or ZZ
 - $W' \rightarrow WZ$
 - with W' couplings from the extended gauge model
 - Low-Scale Technicolor, $\ \ \rho_{\mathrm{TC}}
 ightarrow WZ$
 - SM Higgs-like boson, $H \rightarrow WW, ZZ$ (in addition to 125 GeV Higgs, as a reference at high mass)

Covered in

this talk

Analysis strategy

- Here consider hadronic decays $W \to jj$ and $Z \to jj$
- X is heavy \rightarrow V's are boosted \rightarrow merged in a single jet:

- Signal looks like:
 - a di-jet event
 - each V jet has two-prong substructure
- Apply "W/Z tagger" to one or both jets in dijet events
- Look for a peak on top of a smoothly falling background

- QCD is the only relevant background
- Reduce it with $|\eta_1-\eta_2|<1.3$ (similar to other di-jet searches)

- ഗ ^{2200 ×10³} Cambridge Aachen q* (1.5 TeV) -> qW (× 406) Pythia Z2* with jet pruning, Event 1800 q* (1.5 TeV) -> qZ (× 1170) Pythia Z2* using R = 0.8G_{RS} (1.5 TeV) -> WW (× 38600) Herwig++ G_{RS} (1.5 TeV) -> ZZ (× 78500) Herwig++ 1600 Pruned jet mass: W' (1.5 TeV) -> WZ (× 58100) Pythia Z2* 1400 $70 < M_{\rm jet} < 100 {
 m GeV}$ CMS Preliminary(19.8 fb⁻¹) 1200 $\sqrt{s} = 8 \text{ TeV}$ 1000 CA pruned R=0.8 NB: narrower window 800 --- Untagged data than in semileptonic QCD Pythia Z2* 600 QCD Herwig++ searches 400 Here QCD is much 200 higher 100 50 150 200
 - On average, best sensitivity for all models Jet Mass (GeV)

EXO-12-024 $\tau_N = \frac{1}{d_0} \sum_{r} p_{T,k} \min \Delta R_{1.k}, \Delta R_{2.k}, ..., \Delta R_{N.k}$ Identify boosted V-jets using the "N-subjettiness" ×10³ **ents** 2200 2000 q* (1.5 TeV) -> qW (× 406) Pythia Z2* (using unpruned jet) q* (1.5 TeV) -> qZ (× 1170) Pythia Z2* G_{RS} (1.5 TeV) -> WW (× 38600) Herwig++ G_{RS} (1.5 TeV) -> ZZ (× 78500) Herwig++ Ш ₁₈₀₀ Consider τ_2/τ_1 W' (1.5 TeV) -> WZ (× 58100) Pythia Z2* 1600 CMS Preliminary (19.8 fb⁻¹) close to 0 for jets with Untagged data 1400 √s = 8 TeV two subjets (signal) QCD Pythia Z2* CA R=0.8 1200 QCD Herwig++ closer to 1 for QCD 1000 800 600 400 200 0.4 0.6 0.8 0.2 'n

Search f

Identify boosted
 V-jets using the
 "N-subjettiness"

(using unpruned jet)

- Consider au_2/ au_1
 - close to 0 for jets with two subjets (signal)
 - closer to 1 for QCD
 - High purity: $au_2/ au_1 < 0.5$

Search f

 Identify boosted V-jets using the "N-subjettiness"

(using unpruned jet)

- Consider τ_2/τ_1
 - close to 0 for jets with two subjets (signal)
 - closer to 1 for QCD
 - High purity:

 $\tau_2 / \tau_1 < 0.5$

• Low purity: $0.5 < \tau_2/\tau_1 < 0.75$

Signals after full selection

• Both $q^* \rightarrow qV$ and $X \rightarrow VV$ using high-purity W/Z-tag

Substructure data/MC scale factor

- Study performance of W-tagging in data
 - derive data/MC scale factor (SF)
 - error on this "substructure SF" \rightarrow systematics on the signal!
- The only clean sample of merged hadronic W's is $t\bar{t}$ component of $\ell+{
 m jets}$
 - where top enough boosted that $W \to qq$ merges into one jet
 - but not too boosted so that b-jet merges as well

Substructure data/MC scale factor

Petar Maksimovic, Johns Hopkins

Substructure data/MC scale factor

Search for resona

Effect of one W/Z-tag

• Fraction of events passing one-"W/Z-tag" requirement

Effect of two W/Z-tags

• Fraction of events passing two-"W/Z-tag" requirement

"Bump hunt" in di-jet data

- Background: smooth fit to data (no need for background MC)
- Parameterization same as other CMS di-jet searches

Single W/Z-tag data

• Simultaneous fit to high-purity ($\tau_2/\tau_1 < 0.5$) and low-purity ($0.5 < \tau_2/\tau_1 < 0.75$) data

Double W/Z-tag data

- Simultaneous fit to high-purity ($\tau_2/\tau_1 < 0.5$) and low-purity ($0.5 < \tau_2/\tau_1 < 0.75$) data

$q^* \rightarrow qZ, qW$ in di-jets

• $q^* \rightarrow qW(qZ)$ excluded in mass range 1.0 to 3.23(3.00) TeV

$G_{\rm RS} \rightarrow WW/ZZ$ and $W' \rightarrow WZ$ in di-jets

- $G_{_{RS}} (k/M_{_{PL}}=0.1) \rightarrow WW(ZZ)$ excluded in mass range 1.0 to 1.59(1.17) TeV
- W' \rightarrow WZ excluded in mass range 1.0 to 1.73 TeV

Where we are now

- CMS has a broad program of searches to qV and VV heavy resonances
- We are getting a handle on how to deal with boosted objects
 - special isolation of leptons from Z's and tops [cf. other talks]
 - deconstruct merged jets from W and Z (and tops)
- Deploying these tools in analyses several results are the best of its kind
 - most stringent limits on
 - $q* \rightarrow qW$ and $q* \rightarrow qZ$
 - $W' \to WZ$

Where we are going

- Aim at covering all possible final states for best sensitivity over the full mass range
 - Including semileptonic channels, nost stringent limits to date in all final states (qW, qZ, WW, ZZ, WZ)
 - Combine 8 TeV searches (synchronize models across analyses)
- Upgrade everything for 13 TeV
- No excess so far, but stay tuned!

Search for resonances in W/Z-tagg

BACKUP MATERIAL

Search for resonances in W/Z-tagged dijets

Boston Jet Workshop 2014

Final states in play

- Covered today (recent 8 TeV results)
 - WZ decaying into leptons
 - $W'/\rho_{\rm TC} \to WZ \to 3\ell + E_T^{\rm miss}$
 - (EXO-12-025) WW, one W decaying leptonically, other hadronically
 - $G_{\text{bulk}} \to WW \to \ell + E_T^{\text{miss}} + \text{jet}$ (EXO-12-021)
 - WW, WZ, ZZ, each V decaying hadronically
 - $G_{\rm RS} \rightarrow WW/ZZ$ and $W' \rightarrow WZ$ (EXO-12-024)
- Not covered (7 TeV results, updates in progress)
 - ZZ, WZ, Z decaying to dileptons, V decaying hadronically

• $G_{\rm RS} \rightarrow ZZ$ and $W' \rightarrow WZ$

- ZZ,one Z decaying to neutrinos, other Z hadronically
 - $G_{\rm RS} \rightarrow ZZ$

$G_{\text{bulk}} \to WW \to \ell + E_T^{\text{miss}} + \text{jet}$

- One $W
 ightarrow
 u \ell$, the other W
 ightarrow jj
 - one side: isolated lepton + missing energy
 - opposite side: highly boosted $W \rightarrow jj$, merged into one jet

- Same as for heavy Higgs, but boost is larger (see talk by Zijun)
- Identify boosted W-jets with "N-subjettiness" variable au_2/ au_1

$$\tau_N = \frac{1}{d_0} \sum_k p_{T,k} \min \Delta R_{1.k}, \Delta R_{2.k}, ..., \Delta R_{N.k}$$

• τ_2/τ_1 peaks near zero for two subjets

W-tagging efficiency

- Efficiency to reconstruct a W as a single CA8 jet.
- Once we have a W in a CA8, efficiency to pass W-tagging

Di-jet mass distribution: MC vs data

 A fairly impressive agreement between Herwig++ and PYTHIA6 QCD samples and data

Complementarity

- Most stringent limits to date in all final states WW, ZZ, WZ (,qW, qZ)
- Compare analyses sensitivity in 2-D plane of coupling $k/M_{\rm PL}$ and mass of RS1 Graviton
- Different channels are complementary
- Plan to combine all 8 TeV results

