New Physics Searches with Top Quarks at CMS

Justin Pilot, UC Davis on behalf of the CMS Collaboration

Boston Jet Physics Workshop 22 January 2014

Introduction

- CMS continues to explore diverse and unique final states in searches for new physics
- Large sample of top quarks produced at the LHC
 - Good testing ground for advanced tools
 - Top quark ID algorithms
 - Jet substructure
 - Event reconstruction

- Focus on non-SUSY signatures here
 - 4th generation partner quarks
 - Vector-like T', B' decays to SM tops
 - Top pair resonance searches
 - Z', RS KK gluon
 - Excited quarks
- Will also focus on some of the jetspecific techniques used

Fourth Generation Quarks

- Much activity recently in searches for fourth-generation quarks (t', b')
- Higgs discovery and properties strongly constrains or excludes many models
 - Would enhance Higgs cross section by a factor of 5 or more
- Vector-like quark models are still compatible with existing constraints
 - Left- and right-handed components both contribute to CC interaction
 - Do not obtain mass through Yukawa coupling to Higgs

Fourth Generation Quarks

- Much activity recently in searches for fourth-generation quarks (t', b')
- Higgs discovery and properties strongly constrains or excludes many models
 - Would enhance Higgs cross section by a factor of 5 or more
- Vector-like quark models are still compatible with existing constraints
 - Left- and right-handed components both contribute to CC interaction
 - Do not obtain mass through Yukawa coupling to Higgs
 - Current bounds have m_Q > ~600 GeV
 - Within reach of LHC experiments!

Fourth Generation Quarks

- Many distinct event topologies to consider!
 - B'→tW, bZ, bH
 - ► T'→bW, tZ, tH
 - Leptons, b-jets, boosted t/W/Z/H possible in final states

- Common to assume 100% BR to one decay mode
 - Instead want to scan over all possible fractions with same final state

T' Analyses

- Select final states with 1, 2 (OS and SS), or more leptons
 - Events divided by number of b-tags
- Use large R=0.8 jets to identify merged W or top decay products
 - Mass window required
- BDT used to discriminate signal from dominant SM top pair background
 - OS dilepton channel uses min(m_{lb}) for discrimination

T' Results

B' Analyses

- Again, several different final states to probe
 - Single lepton + jets
 - Dilepton OS, SS
 - Multilepton
- Mass reconstruction or S_T distribution used to discriminate signal

B' Results

- Lepton+jets analysis excludes B'→tW for masses < 732 GeV
- Dilepton analysis excludes B'→bZ for masses < 700 GeV
- Multi-lepton analysis excludes B'→tW for masses < 785 GeV

T_{5/3} Analysis

- CMS search for particles T_{5/3} with exotic charge
 - Solve hierarchy problem and are compatible with observed Higgs mass
 - Found in KK gluon models
- Final state consists of same-sign dileptons
 - Also can identify boosted W or boosted top quarks in the event
 Use jet substructure!
- Basic event selection:
 - ▶ 2 same-sign leptons, p_T > 30 GeV
 - 5 or more jets / "constituents"
 - Boosted top = 3
 - Boosted W = 2
 - H_T > 900 GeV
 - Quarkonia, Z vetos

CMS-PAS-B2G-12-012 arXiv:1312.2391

T_{5/3} Analysis

- CMS search for particles T_{5/3} with exotic charge
 - Solve hierarchy problem and are compatible with observed Higgs mass
 - Found in KK gluon models
- Final state consists of same-sign dileptons
 - Also can identify boosted W or boosted top quarks in the event
 Use jet substructure!
- Basic event selection:
 - 2 same-sign leptons, p_T > 30 GeV
 - 5 or more jets / "constituents"
 - Boosted top = 3
 - Boosted W = 2
 - H_T > 900 GeV
 - Quarkonia, Z vetos

T_{5/3} Results

- ▶ CMS search for particles T_{5/3} with exotic charge
 - Solve hierarchy problem and are compatible with observed Higgs mass
 - Found in KK gluon models
- Final state consists of same-sign dileptons
 - Also can identify boosted W or boosted top quarks in the event Use jet substructure!
- Basic event selection:
 - 2 same-sign leptons, $p_T > 30 \text{ GeV}$
 - 5 or more jets / "constituents"
 - Boosted top = 3
 - ▶ Boosted W = 2
 - H⊤ > 900 GeV
 - Quarkonia, Z vetos
- CMS excludes masses up to 770 GeV

CMS-PAS-B2G-12-012

arXiv:1312.2391

Top Pair Resonances

- Several searches for new heavy particles with large couplings to top quarks
 - Source of boosted top quarks!
- Mix of techniques used
 - Low mass search : threshold top production, standard reconstruction
 - High mass search : boosted top production, use of top tagging algorithms
- Recent publication of CMS combination of lepton+jets and allhadronic channels

Lepton+Jets Analysis

CMS-PAS-B2G-12-006

8

- Two sub-analyses
 - Threshold analysis
 - Boosted analysis

- Choose assignment for each jet
 - Form all combinations, compute χ^2 function
 - Cut to enhance sensitivity

Lepton+Jets Analysis

- Threshold analysis uses a fit to data using the m_{tt} spectrum
- Boosted analysis uses MC for background estimation

Lepton+Jets Results

- Vertical line shows transition between threshold and boosted analyses
 - Determined by sensitivity according to expected limits
- 3 signal model hypotheses
 - Narrow (1% width) Z'
 - Wide (10% width) Z'
 - RS KK gluon
- CMS excludes:
 - Narrow Z' up to 2.1 TeV
 - Wide Z' up to 2.68 TeV
 - RS KK gluon up to 2.5 TeV

CMS-PAS-B2G-12-006

All-Hadronic Analysis

- Search for dijet events corresponding to two boosted top quarks
- Main background is QCD multijet production
 - Data-derived method to estimate this contribution

- Event selection consists of:
 - 2 top-tagged jets (R = 0.8, CA)
 *p*_T > 400
 - ▶ Rapidity separation |∆y| < 1.0</p>
 - Reduces multijet contribution
- Use the CMS top-tagger to identify the boosted tops

CMS Top Tagger CMS-PAS-JME-13-006 CMS Simulation, $\sqrt{s} = 8$ TeV Look at substructure quantities to _____ Fraction of jets 0.1 **QCD PYTHIA 6** identify top quarks tt POWHEG • Jet mass in [140, 250] GeV 0.08 CMS Top Tagger Number of subjets >= 3 Jet $p_{\tau} > 500 \text{ GeV/c}$ Minimum pairwise subjet 0.06 CA R=0.8 ml<2.4 mass > 50 GeV 0.04 Proxy for W within fully-merged jet 0.02 Efficiency ~50% at high pT 150 200 250 300 350 400 50 100 0 Mistag rate < 10%</p> Jet mass (GeV/c²) CMS Simulation, $\sqrt{s} = 8$ TeV CMS Preliminary, Vs = 8 TeV, 19.6 fb⁻¹ 0.08 -raction of jets Top Mistag Rate QCD PYTHIA 6. 0.1 0.07 tt POWHEG 0.06 0.08 CMS Top Tagger 0.05 Jet $p_{-} > 500 \text{ GeV/c}$ 0.06 0.04 CA R=0.8 lpl<2.4 140<m_{iet}<250 GeV/c² 0.03 0.04 N_{subjet}≥ 3 0.02 0.02 0.01 600 700 500 1000 2000 Jet p₁ (GeV/c) 80 100 120 140 160 180 200 20 40 60 0 m_{min} (GeV/c²)

CMS-PAS-B2G-12-005,

- Look at substructure quantities to identify top quarks
 - Jet mass in [140, 250] GeV
 - Number of subjets >= 3
 - Minimum pairwise subjet mass > 50 GeV
 - Proxy for W within fully-merged jet
- Validated in lepton+jets sample enriched in top quarks

 See talk by Jim Dolen later today for much more detail and new updates!

CMS-PAS-JME-13-006

All-Hadronic Analysis

CMS-PAS-B2G-12-005

- Top pair invariant mass formed for signal discrimination
- Jet rapidity separation reduces multijet contribution significantly for high mass candidates

All-Hadronic Results

- CMS results with full 8 TeV dataset
- Narrow (1%) Z' exclusion to 1.65 TeV
- Wide (10%) Z' exclusion to 2.35 TeV
- RS KK gluon exclusion to 1.8 TeV
- High mass cross section limits significantly improved due to $|\Delta y|$ criteria

3000

2800

Combination Results

- Statistical combination of 4 channels:
 - Threshold
 - Boosted 0 b-tag
 - Boosted 1 b-tag
 - All-hadronic

Model	Observed Limit	Expected Limit
$Z', \Gamma_{Z'}/M_{Z'} = 1.2\%$	2.1 TeV	2.1 TeV
Z', $\Gamma_{Z'}/M_{Z'}=10\%$	2.7 TeV	2.6 TeV
RS KK gluon	2.5 TeV	2.4 TeV

- Best limits to date on these physics models
- Recently published in PRL

Excited Top Search

- Search for excited top quark t*→t+g
- ► Electron/muon + missing E_T + ≥6 jets
 - I b-tagged jet
- Kinematic constraints to reconstruct candidate t* mass
 - Distribution used in limit setting
- Exclude t* quarks up to 794 GeV

CMS-PAS-B2G-12-014 arXiv:1311.5357 CMS Preliminary 2012 19.6 fb⁻¹ /s=8TeV Fitting function Fitting uncertainty Observed data t* Signal (M_{.,} = 750 GeV) (muon channel) 400 600 800 1000 1200 1400 Mass(top + gluon) CMS Preliminary 2012 19.6 fb⁻¹ vs=8TeV

Number of Events / 50 GeV/c²

10³

10²

10

n

200

W'→tb Analysis

- Search for W' decaying to t+b in the lepton+jets topology
 - 2 b-jets in final state
 - Require 1+ b-tagged jets
- Can reconstruct the event
 - Solve for neutrino 4-vector
 - Invariant t+b mass used for discriminant

- For W' with pure right-handed couplings
 - Masses excluded up to 2.03 TeV
- Also quote results in phase space of right-, left-handed coupling strengths

Summary

- Many recent CMS results utilizing top quarks reconstructed in the final state
 - New reconstruction techniques becoming prevalent and necessary to maintain sensitivity
 - Jet algorithms
 - Boosted object reconstruction

- Critical to study analysis performance as we work toward 14 TeV collisions
 - Algorithm performance will be critical
- Stay tuned for updates and improvements on many of the analyses presented here today!

Backup Material

Kinematic Regimes

- Searches covering different mass ranges call for different strategies
 X→tt for example
- Low-mass searches (< ~1 TeV)
 - Decay products well-separated
 - Standard top quark methods used
- ▸ High-mass searches (> ~2 TeV)
 - Top quarks become boosted
 - Decay products collimated
 - Special reconstruction algorithms required
 - Jet substructure
- Intermediate mass range
 - Partially merged decay products
 - Mix of techniques

Identifying Boosted Top

 Angular separation between decay products

$$\Delta R \sim \frac{2m}{p_T}$$

- Choose a large jet cone size for reconstruction to 'catch' all decay products
- ATLAS has studied R = 1.0, 1.2, 1.5
- CMS has studied R = 0.8, 1.5
- Use specific algorithms to identify the collimated decay products within this large-R jet

- CMS uses an algorithm based on JHU top tagger
 - Kaplan, Rehermann, Schwartz, Tweedie, PRL 101/142001 (2008)
- The algorithm uses jets with distance parameter R = 0.8, clustered with Cambridge-Aachen
- Uses cuts based on jet substructure information
 - Acquired by reversing the jet clustering algorithm
 - Step back in the pairwise sequence to find substructure
 - Can find a maximum of 4 subjets if all decomposition criteria are met
 - Optimized in simulation

- Look at substructure quantities to identify top quarks
 - Jet mass in [140, 250] GeV
 - Number of subjets >= 3
 - Minimum pairwise subjet mass > 50 GeV
 - Proxy for W within fully-merged jet
- Efficiency ~50% at high pT
- Mistag rate < 10%</p>

CMS-PAS-B2G-12-005

Leptonic Top Decays

- Specific algorithms needed for leptonic decays as well
 - Avoid veto on good events!
- Special isolation requirements to select events where lepton is inside of jet
 - If lepton within the jet cone, must have 25 GeV of momentum orthogonal to jet axis
 - Reject QCD with special cuts

CMS-PAS-EXO-11-092/093

Background Composition

- Two background processes in this analysis
 - SM top pair production
 - QCD multijet
- QCD multijet contribution determined from a data-derived method
- The mistag rate is measured using Type 1+1 events
 - Similar kinematics to signal region

- Require the 1+1 event selection
 - Jet *p*_T > 400, 400 GeV
 - I |∆y| < 1.0</p>
- Form a sideband region
 - Enriched in QCD dijet events
 - Invert pairwise mass cut on one jet

Background Composition

- Two background processes in this analysis
 - SM top pair production
 - QCD multijet
- QCD multijet contribution determined from a data-derived method
- The mistag rate is measured using Type 1+1 events

- Require the 1+1 event selection
 - Jet *p*_T > 400, 400 GeV
 - ▶ |∆y| < 1.0</p>
- Form a sideband region
 - Enriched in QCD dijet events
 - Invert pairwise mass cut on one jet
- Measure tag rate of second jet
 - Subtract ttbar contribution

Forming the QCD Estimate

- Select events of type 1+X
 - Apply the mistag rate to the 'X' jet to model type 1+1 events
- Mass of the weighted jet not representative of the signal selection
 - Biases shape of m_{tt} distribution
- Jet mass of weighted jet set 'by hand' to follow correct distribution

GeV/c²

Probability / 5

0.07

0.06

0.05

0.04

0.03

0.02

0.01E

50

100

"Mass-modified" procedure

