Network tuning - a practical guide

Ramiro Voicu

(Caltech/USLHCNet)

ALICE T1/T2 workshop Tsukuba, March 7th, 2014

Outline

- US LHCNet
- TCP background
- TCP performance tuning
- NIC/Ethernet tuning
- Network tuning
- Debugging

LHCOPN

LHC PN

- Alice - Atlas - CMS - LHCb

p2p prefix: 192.16.166.0/24 edoardo.marfell@cem.ch 20140110

US LHCNet

_____ (thin) <10Gbps

edoardo.martell@cem.ch 20140110

LHC PN

US LHCNet

- LHCOPN from CERN to US
 - FNAL
 - BNL
- 6 x 10G TA circuits
- 4 PoPs
 - Geneva
 - Amsterdam
 - Chicago
 - New York
- The core is based on Ciena CD/CI (Layer 1.5)

TCP BACKGROUND

Internet Protocol (IP) Suite

- Designed in the 1973 by Vinton Cerf and Robert E. Kahn
 - Declared in 1982 by DoD as the standard for military computer networking
- Four layer model (vs 7 layer ISO/OSI)
 - Application (xrootd, ftp, smtp, http, etc)
 - Transport
 - TCP Transmission Control Protocol (reliable, byte stream connection-oriented)
 - UDP User Datagram Protocol (connection-less)
 - SCTP Stream Control Transmission Protocol reliable, message stream connection oriented, connection multiplexing)
 - Internet (routing and addressing IPv4, IPv6)
 - Link (Network Access) Layer (Ethernet, MAC)

TCP

- TCP is the workhorse of data communication between applications, especially for (high-performance) data transfers
- Designed when the losses were equivalent to congestion in the network
- Not suitable for LFN (Long Fat Networks)
 - LFN are networks with large BDP
 - BDP Bandwidth Delay Product represents the maximum "in flight" data

E.g. BDP for 1Gbps network, RTT 5ms BDP = 1000 * 0.005 = 5 Mb = 640 KBytes

TCP Linux implementation

We will analyze each component in the following slides

TCP PERFORMANCE

TCP performance

- What influences the TCP performance?
 - Packet Loss
 - Out of order delivery
 - Round-trip
 - Congestion avoidance algorithm
- Matt Mathis formula

$$\mathsf{BW} \mathrel{<=} \left(\frac{MSS}{RTT}\right) * \frac{1}{\sqrt{p}}$$

where:

MSS – Maximum Segment Size – maximum amount of data which can be received in a single TCP segment

RTT – Round Trip Time

p – probability of packet loss

TCP buffer size

- Default TCP send and receive buffer size were initially 64KBytes
- Increased via the setsockopt(SO_SNDBUF, SO_RCVBUF) sys call in the application
- Auto-tuning of the buffer size were introduced recently:
 - in Linux (kernel 2.4 and refined in 2.6)
 - Linux 2.6 started with 256KB max (now at 4MB) SL(C)5?
 - Windows Vista/7 16MB
 - Mac OS 10.5
- The autotuning works far better in the recent kernels, no need to call setsockopt(SO_*)

TCP settings Linux

/etc/sysctl.conf

```
net.core.rmem_max = 33554432
net.core.wmem_max = 33554432
```

net.ipv4.tcp_rmem = 4096 87380 33554432 net.ipv4.tcp_wmem = 4096 65536 33554432

DO NOT SET net.ipv4.tcp_mem as suggested in some tuning recipes from some Ethernet vendors. This is computed at boot time.

In 2006 when we started with **FDT** we used to recommend 8MB, but 16MB or 32MB should be more suitable for recent hardware.

More settings:

http://monalisa.cern.ch/FDT/documentation_syssettings.html
http://fasterdata.es.net/host-tuning/

TCP settings Linux

A few more settings for Linux (same /etc/sysctl.conf)

```
net.core.netdev_max_backlog = 25000
net.ipv4.tcp_congestion_control = cubic
(a few series of kernels 2.6.15-18 had issues with cubic)
net.ipv4.tcp_no_metrics_save = 1
```

- It is highly recommended to keep the kernel updated
 - Last "goodies" automatic TSO sizing and FQ scheduler for TCP pacing came in 3.12.4 end of 2013 ... http://lwn.net/Articles/564978/

FDT bandwidth tests in Alice

Single TCP stream performance

ETHERNET / NETWORK INTERFACE CARD

Ethernet/NIC

- MTU Maximum Transfer Unit
 - Jumbo frames MTU 9000 (on the end-host), 9192 in the WAN

 - Can cause "black-holes" (one direction fine, not the other one)
 use net.ipv4.tcp_mtu_probing=1 in /etc/sysctl.conf
 - MSS = MTU (ip header + tcp headers)
- Ethernet FLOW control
 - mechanism for temporarily stopping the transmission of data via PAUSE frame
 - Whenever the queue at the receiving port get full a PAUSE frame is sent back to the sender to stop the transmission
 - pacing at lower level (instead of TCP)
 - can be disabled via ethtool, or kernel module parameter
 - required at least for 40Ge cards
 - as well as RoCE transfers (RDMA over Converged Ethernet) -Lossless Ethernet
 - Seen increases from 4-5Gbps to 22Gbps per TCP stream

17

Ethernet/NIC

- IRQ pinning (also know as IRQ affinity)
 - Manually assign the interrupts per CPU (core, HT)
 - Usually is needed whenever a new generation of network cards appears (E.g. migration from 100Mbps to 1Gbps, then 10Gbps, 40Gbps, ...)
 - Most of the time needed at the receiver due to CPU saturation (use mpstat, htop to monitor per core utilization)
 - Hint: irqbalance daemon will be disabled if manual config

```
E.g. FOR Linux
cat /proc/interrupts | grep ethX
echo bitMask > /proc/irq/<irqNo>/smp_affinity
where bitMask represents the core#
  (core 2 = 04, core 4 = 16, core 5 = 32, etc)
```


NETWORK TUNING

Network tuning

 TCP congestion control mechanism produces bursty traffic as seen by the network devices

Site Firewalls

- Usually the firewalls are able to handle less traffic than their network interfaces
- Needs big input buffers to accommodate the TCP burstiness
- It is recommended to isolate data-intensive traffic (HEP) and by-pass the firewall

Router/Switch Buffer Size Issues

- Packet drops, losses (if any) usually appear at the output queue in the ToR (Top of the Rack) switches and/or cluster aggregation switch
- Recommended network devices with larger buffers, even though more expensive
- "Buffer bloat" may arise in congested networks == bigger buffers along congested paths

DEBUGGING

Debugging

- What to measure?
 - SNMP monitoring of network devices
 - Interfaces utilization, errors on the interfaces, congested paths, packet drops
 - Same for the hosts (/proc FS, ifconfig, ethtool –S):
 - Interface utilization, errors on the interfaces
 - Look for CPU saturation (per core)
 - Packet loss, route (traceroute, tracepath),
 - UDP at different rates and look for losses along the path (recommended nuttcp and/or iperf3)
 - Initially smaller rates (if errors) check the connectors
 - Increase the rate

nuttcp -i 5 -T 60 -R 8G -u 10.100.100.4

Debugging

- Continuous monitoring via active probes
- Alarms whenever performance drops below a certain threshold
- Tools: nuttpc, bwctl, iperf, FDT mem2mem
- Orchestrated: PerfSONAR PS (WLCG service), MonALISA

あなたのためにこれ以上の刺身!

有り難う御座います

