ECFA HL LHC Experiments Workshop, Aix-les-Bains, 1-3 Oct. 2013 P. Riedler/CERN

DEVELOPMENT OF
RADIATION HARD
SENSORS

. % ECFA High Luminosity LHC
P. Riedler 5 Experiments Workshop
sics and technology challenges

CERN g

A|x-les-Bains
France
https://indico.cern.ch/conferenceDisplay.py?confld=252045

o
@
)
=
[l
-
Q
@)




ECFA HL LHC Experiments Workshop, Aix-les-Bains, 1-3 Oct. 2013 P. Riedler/CERN

Present LHC Tracking Sensors

Silicon tracking detectors are used in all LHC experiments:
Different sensor technologies, designs, operating conditions,....
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Silicon-Sensors

All present sensors produced in a planar process:

* High resistivity wafers (few kQcm), 4”- 6” diam. O(200-300 pm) thick

» Specialized producers (~10 world wide) no industrial scale production like in
CMOS processing

» Sensor prices scale roughly with the number of mask layers (single sided and
double sided processing)

* Inner tracker regions: pixel sensors (areas ~ 2 m?, fluences ~ 10" n., cm?)
« Outer tracker regions: strip sensors (areas up to 200 m?, fluences ~ 10" n., cm?)
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particle
track N. Wermers/Univ. of Bonn Thomas Ferbel. Experimental Techniques in High Energy Physics.

. . . Addison-Wesley Publishing Company, Inc.,1987
ALICE uses also silicon drift detectors (2 layers)



Sensor Technology in Present Experiments

p-in-n, n-in-p (single sided process)
n-in-n (double sided process)

Choice of sensor technology mainly
driven by the radiation environment

p+ R _ n*
large (EW- readout
Fluence
TMeV n,, [cm™] Sensor type
G. Kramberger, Vertex 2012
ATLAS Pixel* 1x 10" n-in-n
ATLAS Strips 2x 10 p-in-n n-side readout (n-in-n, n-in-p):
CMS Pixels 3 x 1015 n=in-n « Depletion from segmented side
CMS St 16 % 101 ) (under-depleted operation
rips .6 X p-in-n possible)

LHCb VELO 1.3 x 10147 n-in-n, n-in-p e Electron collection

ALICE Pixel 1x 1013 p-in-n « Favorable combination of

ALICE Drift 1.5 x 1012 D-in-n weighting fieldand

« Natural for p-type material

ALICE Strips 1.5 x 1012 p-in-n

** per year
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Radiation Damage Effects in Sensors

- Effects observed in ATLAS, CMS and
LHCb (lower luminosity in ALICE)

- Main challenge for the sensors is an
increase in leakage current:

- Risk of thermal runaway -detector becomes
inoperable

- Operate sensors at low temperatures
(see talk by B. Verlaat)

- Increase in shot noise - degraded
performance
- Leakage current increases with integrated
luminosity in agreement with the
predictions

- Further effects:

- Sensor depletion voltage changes with
radiation damage

- Loss of signal due to radiation induced
damage

Leakage current vs. integrated luminosity (examples)

1, @0°C (Ao

Excellent agreement over 4 orders of magnitude, need a good knowledge of inputs (L,flux,T).
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Key Sensor Issues for the Upgrades

- Radiation damage will increase to Upgrades Area Baseline
several 10'® n_ cm'2 for the inner sensor type
reglons in ATLAS and CMS ALICE ITS 10.3 m2 CMOS

- Example of common activities to
develop radiation harder sensors within
the RD50 collaboration

- Operational requirements more : :
demanding (low temperature and all ATLAS Strips 193 m? n-in-p
related system aspects)

ATLAS Pixel 8.2 m? tbd

CMS Pixel 4.6 m? tbd
- Increased performance:
- Higher granularity CMS Strips 218 m2 n-in-p
- Lower material budget

LHCb VELO 0.15 m? tbd

- Control and minimize cost
- Large areas LHCb UT 5 m? n-in-

- Stable and timely production
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50 um
- Planar sensors (pixels and strips): |

* Nn-in-p sensors

- Optimized designs

- Reduced edge regions
« Thinner sensors

. & ” . CMS Tracker Sensor Campaign
Novel concepts . Slim active edge sensor for ATLAS bais
A. Macchiolo, Hiroshima 2013
- 3D detectors

- CMQOS sensors

- Work on diamond continues _\

ALICE ITS prototype CMOS sensor MIMOSA32

- Simulation and study of radiation induced
macroscopic changes

- Better understanding and prediction of the

effects, improved designs 3D sensor
S. Kuehn, NSS 2012
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Radiation Defect Study and Simulation

- In depth understanding of the defects — allows prediction of
effects and improvements in design and material

- Effort led by RD50 collaboration

- Systematic measurement and simulation (TCAD and custom)
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n-in-p Sensors

n-side readout
- Collection of electrons
- Fast signal, less trapping

As n-in-n sensors depletes from the
segmented side

- Under-depleted operation possible

Flat annealing behaviour after high
radiation

Single sided process

- Electrode isolation needed (p-spray,
p-stop), no back side patterning

- Cheaper than n-in-n (~30-40 % less)
- More foundries available

E.g. adopted as baseline for ATLAS
and CMS outer tracker upgrade

10° 10° 10*

Annealing h@RT) CMS Tracker

From D. Eckstein



fluence operation:
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Planar Sensors at few 10'>-10"° 1MeV n,

Further improve planar sensors for high

Optimize design
» e.g. bias structures, isolation

Scheme
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Slim-Edge and Edgeless Sensors

- Guard rings are located in the edge region of the sensor to degrade the potential
to the edge - insensitive region

- Reduce the edge of the silicon sensors to allow for better overlap with less material

- Several techniques under study:

- Shifted guard rings (used for ATLAS IBL n-in-n planar sensors)

- 3D electrodes in the edge region (used for ATLAS IBL 3D sensors)
- SCP (Scribing, Cleaving, edge Passivation)

- Active edge sensors with sideways implantation

lSl!llI'lﬂ-ﬂl

e Sensor A ERENE ='lm=| y

------

. Edge 1=
region

Efficiency scans ATLAS IBL)
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Long pixel [um ]
From: “Prototype ATLAS IBL Modules using the FE-I4A Front-End Readout Chip" (JINST 7 (2012) P11010)



3D Sensors

~0.2-1mm
guard rings
-~

PLANAR

Both electrode types are processed
inside the detector bulk

Max. drift and depletion distance set by
electrode spacing - reduced collection
time and depletion voltage

Very good performance at high fluences

Production time and complexity to be
investigated for larger scale production

Used in ATLAS IBL

3D pixel sensors

B o« & - O -
TSR, °

SCC105 FBK-3D, un-irrad, HV=20V, Eff.=98.77%

E 6’ ] El‘ o

SCC81 CNM-3D, n-irrad HV=160V, Eff.=97.46%

SCC34 CNM-3D, p-irrad, HV = 160V, Eff.=98.96%

ATLAS IBL Sensor (Threshold: 1600 e
p-irrad: 5x107° n,,/cm? with 24 MeV protons
n-irrad: 5x10'° n,,/cm? by nuclear reactor)

From: Prototype ATLAS IBL General Meeting, S. Tsiskaridze (IFAE-Barcelona)
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CMOS Sensors

- CMOS sensors contain sensor and Hybrid Pixel Detector
electronics combined in one chip poorn
- No interconnection between sensor and chip needed chip 7

- Standard CMOS processing
- Wafer diameter (8”)
- Many foundries available
- Lower cost per area
- Small cell size — high granularity

- Possibility of stitching (combining reticles to larger
areas)

track

CMOS (Pixel) Detector
- Very low material budget

- CMOS sensors installed in STAR experiment

- Baseline for ALICE ITS upgrade (and MFT, LOI
submitted to LHCC) p++ substrate

; particle track
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CMOS Sensors

Traditional sensor, examples: MIMOSA,
MIMOSTAR,..

- Only few transistors per cell (size ~ 20 um x
20 um)

- Rolling shutter architecture (readout time
O(100 ps))

- 0.35 ym CMOS technology with only one
type of transistor

- Charge collection by diffusion

- Limited radiation tolerance for “traditional
sensors” < 10" n,, cm™

Achieving better radiation tolerance
- Moving to deeper sub-micron CMOS

- Changing to collection by drift (higher
resistive material and bias)

Other improvements:

[ MIMOSTAR

/ionizing particle

7 passivation)
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- Results from test
beam at CERN with
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shows similar values
(<10% of difference)
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A.Dorokhov, IPHC, Strashourg, France
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- Investigate different architectures
- Optimize power management

A. Dorokhov et al. (IPHC Stassbourg)
Taken from W. Snoeys, Hiroshima 2013
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CMOS Sensor Developments

- Many different variations
under study (examples):

- CMOQOS process with deep p-well
(for ALICE ITS upgrade)

- HV-CMOS process

- CMOS process with back side
junction

- Silicon on Insulator technology

- Encouraging new results
also for radiation tolerance,
but further work needs to be
done
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Summary

R&D activities on sensors in different areas

Planar sensors and novel structures:
Common developments on material and simulation within RD50
Many interesting developments for high fluence environment: thin sensors,
n-in-p, n-in-n, 3D, ...
Large scale production for some techniques to be shown
Cost and throughput for large areas to be investigated (producers)

CMOS sensors

Several techniques under study in parallel (Workshop?)

First encouraging results concerning radiation hardness

Low cost technology for large area coverage in wafer production

Outer layer coverage interesting, but to be shown how to realize this in a
power effective design

Common efforts in BOTH areas required to prepare for the next
generation of sensors
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