Two- and Three-particle azimuthal
correlations from STAR

as a measure of viscous and non-linear
effects and what they tell us about the
ridge in p+A and A+A collisions
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Things we think we understand about
flow but don’t

Thing number 1: v, is just due to
fluctuations
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Overlap Geometry Leads to Strong
Correlations Between Harmonic Planes

In-plane fluctuation: large impact

Out-of-plane fluctuation: no impact

creating higher harmonics especially €,

+A on the
edge of A+A

&

Derek Teaney and Li Yan
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We should expect the 3@ and 15t plane to be

correlated with the 2nd

If they aren’t: we don’t have a clue about
what’'s happening

We can measure this with (cos(1¢,+2¢,-3¢;))

We need to understand these correlations to understand the
relationship between v; and the ridge in p+A and A+A




IViotivation Tor >-particle
correlations

Map out geometry that causes v, and the ridge

Better understand relationship between the ridge in p+A and
A+A

Map out the distribution of particle pairs relative to the
reaction plane

Over-constrain hydro models to extract n/s vs T

We compare models to 2- and 4-particle correlations: why
not 37

Gain insight into the source of two-particle correlations




STAR Detector and Data Set

Full azimuthal coverage
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t counts reflect stringent selection
Iteéria required for analysis and
bptance corrections

by Maria & Alex Schmah

We've measured the efficiency and acceptance corrected 2- and 3-particle

correlations using Q-cumulants for p>0.2 GeV Bilandzic, et. al. Phys. Rev. C 83: 044913,2011

Bilandzic, et. al. arxiv.org/1312.3572
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Measured Correlations
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We see a correlation of harmonic 1, 2, and 3 as expected from geometry
fluctuations (p+A on the edge of A+A)

Hydro model with n/s=1/41 describes the data well

4/07/14 Winter Workshop



Exploration of other harmonics
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Poorer agreement especially with the higher harmonics; lowest harmonics are the
most robust in the model. Model uncertainties need to be evaluated



Energy Dependence
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The (cos(1¢,+2¢p,-3¢p;)) correlation becomes negative at lower beam energies
Robust observation across all centralities
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Energy Dependence

back-to-back pairs lead
to negative (cos(®,-9,))
——)
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The (cos(1¢,+2¢,-3®,)) correlation becomes negative at lower beam energies
This also shows up in (cos(®;-9,)): likely related to momentum conservation
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Energy Dependence
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Even More Data...
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What does it mean?

cos(1.*x-3."y)

n=2 is dominated by the reaction plane so
taking ¢'=¢-Y¥,
(cos(19+2¢-3¢)) = (cos(1¢’-3¢"))
(cos(19+1¢-2¢)) = (cos(1¢'+1¢’))

The values we showed in the previous slide
can be combined to conclude what
configurations might explain the observed
correlations

At low energies: At high energies:
c0s112<0, co0s123<0 and co0s224>0 c0s112<0, cos123>0 and co0s224>0

< U

12



4/07/14

TWO PARTICLE CORRELATIONS

v, vs centrality, p; and energy:
In what follows, v ?{2}=(cosnAd) with no assumptions about the

underlying source of the correlations except where obvious short-range
correlations can be isolated

Winter Workshop
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Extracting v {2} from An dependence
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HBT, track-merging and short-
range jet-like correlations
isolated and removed

Analysis technique:

cos2(p,(pr)-, )>
\/<C052(¢i - @f)>

HBT and jet-like small An
correlations subtracted from
(cos2(¢—;))(An) for each py bin.

Vz(pr)=<
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V,(p;): narrow jet-peak removed
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Energy Dependence of v {2}

V4{2} persists down to 7.7 GeV
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Some interesting structure:
under study
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Energy Dependence of v,%{2}
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For N,,+<90, v5{2} at 11.5 and 7.7 GeV is consistent with zero
consistent with sharp transition in STAR Phys.Rev.C.86.064902

but at 7.7 GeV, minjets are not a likely source for the non-zero v,;{2} in central
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Conclusions

Three-particle correlations show the expected
geometry fluctuations (p+A next to A+A)

Comparisons made with a hydro model

— (cos(P,+2d,-3;)) agrees but others strongly deviate

— models are sensitive to viscosity, freeze-out temperature,

etc. and vary a lot: lack of predictive power? vs data are highly sensitive to
parameters? We need a better evaluation of model systematics.

— overconstrains and challenges the models

v, measured out to almost 20 GeV vs centrality. Data
shows a flat high p; region

v, measured vs energy: v; persists down to 7.7 GeV in
sharp contrast to a mini-jet picture
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New Calculations, now w/Non-linear
Terms

0.1

2. Linear response assumes, in the spectrum,

Un{pT)E—in\l-fn — wn{pT)e—in*ﬁn 0_08

S0 1. Up X Wy X £, and ii. &, = U,,.

0.06
Linear response neglects non-linear 0.04
terms
_ _ _ 0.02
1}16_11111 — wle—i@l + wliza)e—t{‘aqﬁ'g—ﬂiﬁg}
we—imm _ w4e—i4<t-4 + w4(22}€—i4!1?2 0
vse Y5 = awze TS 4wy pg e (3PT2E2) i ideal + nordlinear

-0.02-
Teaney and Yan: see for example, 1206.1905, 1210.5026

STAR Preliminary |

0 100 200 300
N

part

0 over-constrain models and pin down the characte
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