

Helmut Oeschler

University of Heidelberg

For the ALICE Collaboration

WWND-2014, April 7th, 2014

Outline

- Strangeness enhancement at LHC
- Comparison pp and heavy-ion collisions
- Chemical and kinetic freeze out vs. \sqrt{s}
- Do d, 3He and hypertritons fit in a thermal picture?
- Baryon-meson ratios: quark recombination or ?
- D_s vs. D mesons, are u, d, s "thermal" when c is present?

Strangeness Enhancement pl b728 (2014) 216

ALI-DER-57382

What causes the decrease? An increase in pp or a decrease in Pb-Pb

Strangeness in pp and Pb-Pb

In HIC, the ratio Ξ/π remains constant, while in pp it rises! Enhancement well explained by thermal model! No sign for QGP per se!

Centrality Depedence of Multistrange

ALICE Coll. PL B728 (2014) 216

Predictions with T = 170 MeV (J. Cleymans et al.)

T = 164 MeV (A. Andronic et al.)

Particle ratios at LHC

ALICE Coll., Phys. Rev. Lett. 109, 252301 (2012)

Central Pb-Pb Collisions at the LHC

Thermal fits in central Pb-Pb

- General description, okay, T = 156 MeV
- Significant deviation for p (T \approx 140 MeV)
- (multi-)strange baryons correspond more to T = 165 MeV
- Annihilation of p pbar between chemical and kinetic freeze out? Sound reasonable, but
- Two freeze-out temperatures, one for u,d and one for s?

Kinetic freeze out – STAR BES

From STAR Coll., CPOD 2011

At LHC?

In central Pb-Pb:

 $T_{chem} = 156 \text{ MeV} (?)$

 $T_{kin} = 95 \pm 10 \text{ MeV}$

ALICE

Phys. Rev. Lett. 109, 252301 (2012)

Long phase between chem. and kin. freeze out!!!

In pp particle ratios are well described using canonical description

In Au+Au only stable particle ratios are well described

STAR Collaboration

Canonical Approach

Pion density $n(\pi) = exp(-E_{\pi}/T)$ 0.20 Strangeness is conserved! 0.15 K^{+}/π^{+} Kaon density 0.10 $NN \rightarrow N \Lambda K^+$ $n(K) = exp(-E_K/T)$ 0.05 $[g V \int ... exp[-(E_A - \mu_B)/T]]$ 0.00 Ο J. Cleymans, HO, K. Redlich, PRC 60 (1999)

Equations in the model are different! ¹²

Testing Canonical Suppression at LHC

Prediction: I. Kraus et al., PR C 79 (2009) 014901

Correlation Radii at LHC

pp 900 GeV thermal fit: arXiv:1102.2745 Next: high-multiplicity events in pp 7 TeV !!!??? Will pp collisions approach Grand canonical limit, i.e. HIC

Measurement of (anti-)nuclei

Does the d/p ratio vary with centrality?

Do hypertritons fit in a thermal picture?

ALI-PREL-59772

What can be learnt from a comparison pp, p-Pb and Pb-Pb?

Centrality Dependence

Influence of canonical suppression ¹⁹

Centrality Dependence

Baryon-meson ratio

ALICE PRL 111 (2013) 222301 similar STAR: PRL 108(2012)

Speculation: recombination of two/three quark

Other Particle Ratios

Strong argument against quark coalescence! What about v₂? ²²

Distribution of s, u and d quarks when c quarks present?

7 TeV Ratio D_s/D^0 pp

In Pb-Pb collisions

In p-Pb collisions

Review of strangeness

- Strangeness enhancement decreases with \sqrt{s} . Understood as disappearance of the canonical suppression in pp
- Particle ratios: okay, but devi What do we learn Also d, 3He Many on are well described by
- statistical model. And what about coalescence?
- Meson-baryon anomaly: No anomaly -> radial flow
- Ratio D_s vs. D mesons, statistical equilibrium of u ,d, s also when c present, but not of c with u, d, s, ????

Predictions for LHC

Particle Composition in Jets

ALI-PERF-15359

Comparison with Theory

ALICE PRL 111 (2013) 222301

EPOS quite good Hydro low p_T part -> radial flow

 Λ/K^0 ratio p-Pb vs. Pb-Pb

Slight increase with multiplicity. Flow or color reconnection or ? ³¹

RHIC, $\sqrt{s_{NN}} = 200$ GeV, fit of average data

 K^*, Σ^*, Λ^* not in fit

From Anton, QM 2012

LHC Energies

pp 7 TeV

Pb-Pb 2.76 TeV

 p/π the same in pp and Pb-Pb,

BUT lower than expected from stat. models

K/ π in pp is lower than in Pb-Pb, expected from stat. model! Strangeness is okay!

$T - \beta$ Plane

