A Comparison of HBT Measurements for d+Au and Au+Au collision systems at $\sqrt{s_{NN}} = 200$ GeV at RHIC-PHENIX

30th Workshop on Nuclear Dynamics – WWND Galveston, Texas 6-12 April 2014

> Alex Mwai for the PHENIX Collaboration Stony Brook University

Observed long-range correlations in high multiplicity events in p+p and p+Pb

- Near-side ridge structure observed at LHC for high multiplicity p+p (7 TeV) and p+Pb (5.02 TeV) collisions suggest that these small systems are large enough (and last long enough) for significant medium effects previously only seen in A+A collisions
- Two theories on the origin of ridge structure:

(1) Color Glass Condensate Framework

arXiv: 1302.7018

long-range per-trigger-yields of charged hadrons p+Pb CMS: Data compared to model

CGC framework: Observed two-ridge structure is as a result of quantum interference effects between correlated gluons due to gluon saturation at small impact parameters

(2) 3+1-dimensional hydrodynamic model

arXiv:1306.3439

Flow hydro results compared to the experimental d+Au results at RHIC at both 0-5% and 0-20% centrality

Elliptic and triangular flow hydro results compared to experimental p+Pb results at LHC at 0-2% and 0-20% centrality

Viscous hydro model: Observed collective effects could be due to fluctuations of initial state carried through final-state hydrodynamic evolution

Motivation for HBT studies in d+Au

- With two equally successful interpretations of the near-side ridge structure, need for an independent check of the role of final-state interactions
- HBT measurements are well studied and show characteristic patterns due to collective effects in A+A collisions
- Similar measurements can provide constraint for final-state effects in p+A collisions
- Common trends in A+A and p+A systems in HBT measurements would be a strong indication of final-state effects in p+A systems

HBT Methodology

q_{side} - is perpendicular to the beam direction

 \textbf{q}_{out} - is parallel to the average transverse momentum of pair or \textbf{k}_{τ}

 $\boldsymbol{q}_{\text{long}}$ - is along beam direction

Based on quantum interference of identical particles whose space-momentum correlation can be expressed as:

$$C_{2}(q,k)-1=\int (d^{3}rS_{k}(r)[|(\psi(k,r))|^{2}-1])$$

 $q = p_1 - p_2$ $k = (p_1 + p_2)/2$

Space-time information extracted by fitting $C_2(q)$ with:

 $C_{2}(q_{side}, q_{out}, q_{long}) = 1 + \lambda \exp(-R_{side}^{2}q_{side}^{2} - R_{out}^{2}q_{out}^{2} - R_{long}^{2}q_{long}^{2})$

Here, q is decomposed in the longitudinal co-moving system (LCMS): q_{side} , q_{out} , q_{long}

 $\rm R_{side}$ - carries information about the geometrical size of the dynamic system, $\rm R_{geom}$

 R_{out} - encodes information about the size and the emission duration of the system at freeze-out, $\Delta \tau$

 R_{long} - provides information about the lifetime of the system, τ

The PHENIX Experiment

Zero Degree Calorimeter (ZDC) & Beam Beam Counter (BBC) Vertex and centrality determination

Drift Chamber (DC) & Pad Chamber (PC) Tracking information

Electromagnetic Calorimeter (EMC) Lead Scintillator Sectors (Six Total) PID information

Time-of-Flight Detector (TOF) PID information

With their good timing resolution, the EMC and TOF detectors provide for very good PID capabilities 7

Centrality and PID Determination

Centrality determined from total charge deposited in BBC

 ${\rm N}_{\rm part}\,$ and ${\rm R}_{\rm bar}\,$ obtained from MC-Glauber simulation of each centrality class.

 R_{bar} is the initial transverse size of the system defined as: $1/R_{bar} = \sqrt{(1/\sigma_x^2 + 1/\sigma_y^2)}$

 σ_x, σ_y : RMS widths of density distributions

PID Determination

PID done using the time-of-flight method Very good pion separation obtained in both d+Au and Au+Au systems

Analysis Summary and Outline

Analysis outline

- Select particles
- Build correlation functions $(C_2(q))$
 - Apply appropriate cuts to remove spurious correlations
- Fit to extract for HBT radii in 3-D and study as a function of:
 - collision centrality
 - average transverse mass (m_T)

for each collision system

 $\bullet\,\mbox{Fit}\,\,\mbox{HBT}\,\,\mbox{radii}\,\,\mbox{m}_{\mbox{\T}}\,\,\mbox{dependence}\,\,\mbox{to}$ obtain geometrical radius and system lifetime

Analysis summary

Analysis done for charged pions for:

 $\sqrt{s_{NN}}$ = 200 GeV Au+Au 3.5 billion events

 $\sqrt{s_{NN}}$ = 200 GeV d+Au 1.8 billion events

PID: 2σ for pion acceptance; 3σ for kaon rejection

 k_{T} range: 0.2< k_{T} <0.7 GeV/c

 k_{T} average: 0.39 GeV/c (for collision geometry dependence)

Correlation Functions

 $C_{2}(q_{side}, q_{out}, q_{long}) = 1 + \lambda \exp(-R_{side}^{2}q_{side}^{2} - R_{out}^{2}q_{out}^{2} - R_{long}^{2}q_{long}^{2})$

- In both d+Au and Au+Au, correlation functions were generated in 3-D and projected for $q_{side}^{}$, $q_{out}^{}$, and $q_{long}^{}$ in different centrality and $k_{\tau}^{}$ selections.
- $(R_{out}, R_{side}, R_{long})$ were obtained and compared at similar N_{part} values in d+Au (central collisions) and Au+Au (peripheral collisions) for m_{T} dependence. The centrality dependence was also studied.

Excellent fits to the correlation functions found in both d+Au and Au+Au

HBT measurements in Au+Au: N^{1/3} dependence

Au+Au collisions show a linear increase of HBT radii with an increase in $N_{part}^{1/3}$

HBT measurements in Au+Au: m_{T} dependence

Au+Au collisions show a systematic decrease of the HBT radii with an increase in m_{τ} . This trend indicates a radially expanding source.

m_{τ} dependence of HBT radii in d+Au vs. Au+Au

Freeze-out temperature and expansion velocities obtained from blast wave fit to p_{T} spectra for identified charge hadrons.(d+Au: T = 0.118 +- 0.02; β = 0.42 +-0.03 c) (Au+Au: T = 0.123 +- 0.02; β = 0.38 +-0.08 c)

- The $m_{_{\rm T}}$ dependence was studied for similar values of $N_{_{part}}$ in d+Au and Au+Au
- Decreasing trend with m_T in all HBT radii for both d+Au and Au+Au
- Similar trend found in Au+Au and Pb+Pb systems – indicative of an expanding source
- Fits done based on the blast wave model to extract:
 - R_{geom} Geometrical radius at freeze-out
 - τ_0 System lifetime
- d+Au system shows smaller transverse freeze-out size and lifetime
 13

m_{T} dependence of R_{out}/R_{side} : d+Au vs. Au+Au

- The m_T dependence for R_{out}/R_{side} was also studied for similar values of N_{part} in d+Au and Au+Au
- Ratio found to be flat (close to unity)
- This trend suggests a system, both in d+Au and Au+Au, with a very short emission duration

m_{T} dependence of freeze-out volume: d+Au vs. Au+Au

- The freeze-out volume is proportional to R_{out} x R_{side} x R_{long}
- The d+Au freeze-out volume found to be smaller than Au+Au
- Fall-off with m_T is comparable to that in Au+Au within systematic error

HBT studies of the collision geometry dependence of d+Au vs. Au+Au

N_{part} dependence of HBT radii: d+Au vs. Au+Au

- The N_{part} dependence was studied at the same average k_T
- A similar linear increase with $N_{part}^{1/3}$ seen in R_{out} and R_{side} for both systems
- A slight slope difference in R_{long} could be from differences in longitudinal dynamics between d+Au and Au+Au
- Results suggest that strong correlation between transverse size and initial geometry common in d+Au and Au+Au
- Dependence of transverse expansion rate with collision geometry similar in the two systems

R_{side} vs. R_{bar}

• Expansion time (τ) proportional to R_{bar}

therefore

- R_{bar} better scaling variable for HBT radii
- R_{side} has linear relationship with R_{bar} (so does R_{out})
- Similar slopes for d+Au and Au+Au

-Probably larger slope for Pb+Pb since stronger expansion rate at 2.76 TeV expected

This dependence emphasizes the role of final-state re-scattering effects in d+Au typical of a hydrodynamic evolution scenario₁₈

Summary and Conclusion

- Two differing theories on the origin of the two-ridge structure in p+p and p+A systems

 (1)Initial effects from interference of correlated gluons due to gluon saturation
 (2)Final-state hydrodynamic effects
- HBT studies provide an independent check of existing models
- m_{τ} dependence of HBT radii shows decreasing trend with increase in m_{τ} for d+Au and Au+Au indicative of expanding source. $R_{_0}/R_{_s}$ is flat and about unity suggesting a short emission duration
- d+Au system also found to be smaller than Au+Au and with shorter lifetime
- Similar dependence of transverse expansion rate with collision geometry evident in both systems
- R_{side} found to have linear relationship with R_{bar} and a similar slope for both d+Au and Au+Au systems.
- Results strongly suggest that final-state re-scattering effects play important role in d+Au