PARTICLE PRODUCTION AND FINAL STATE EFFECTS IN NUCLEAR COLLISIONS BJÖRN SCHENKE, BROOKHAVEN NATIONAL LABORATORY

THE 30TH WINTER WORKSHOP ON NUCLEAR DYNAMICS APRIL 9 2014

INTRODUCTION

- Heavy Ion Collisions: Initial state fluctuations and collective flow can describe lots of experimental data
- Details of the fluctuations are important
- How to distinguish between different models of multi-particle production
- Are the physics the same in small systems?

B.SCHENKE, P.TRIBEDY, R.VENUGOPALAN, PRL108, 252301 (2012), PRC86, 034908 (2012)

- Gluon saturation at $p_T \lesssim Q_s(x, \mathbf{b})$
- Strong fields with occupation $\sim 1/\alpha_s$ Classical description possible
- IP-Sat model parametrizes $Q_s(x, \mathbf{b})$ (simple way to include impact parameter dependence) KOWALSKI, TEANEY, PHYS.REV. D68 (2003) 114005
- Fit parameters to HERA diffractive data

B.SCHENKE, P.TRIBEDY, R.VENUGOPALAN, PRL108, 252301 (2012), PRC86, 034908 (2012)

- Sample nucleon positions from Woods-Saxon distribution
- Add all (Gaussian) thickness functions

$$\frac{\mathrm{d}\sigma_{\mathrm{dip}}^{\mathrm{p}}}{\mathrm{d}^{2}\mathbf{x}_{T}}(\mathbf{r}_{T}, \mathbf{x}, \mathbf{x}_{T}) = 2\mathcal{N}(\mathbf{r}_{T}, \mathbf{x}, \mathbf{x}_{T}) = 2\left[1 - \exp\left(-\frac{\pi^{2}}{2N_{c}}\mathbf{r}_{T}^{2}\alpha_{s}(Q^{2})\mathbf{x}g(\mathbf{x}, Q^{2})\sum_{i=1}^{A}T_{p}(\mathbf{x}_{T} - \mathbf{x}_{T}^{i})\right)\right]$$

• Extract $Q_s(x, \mathbf{x}_T)$ and get color charge density distribution

B.SCHENKE, P.TRIBEDY, R.VENUGOPALAN, PRL108, 252301 (2012), PRC86, 034908 (2012)

- Sample color charge density $\rho^{A/B}(\mathbf{x}_T)$
- For nucleus A and B compute the path-ordered exponential over its longitudinal extend

$$V_{A/B}(\mathbf{x}_T) = \prod_{k=1}^{N_y} \exp\left(-ig\frac{\rho_k^{A/B}(\mathbf{x}_T)}{\nabla_T^2 + m^2}\right)$$

- m is an infrared cutoff of order $\Lambda_{
 m QCD}$
- Wilson lines after the collision are then obtained from V_A and V_B via the Yang-Mills equations

B.SCHENKE, P.TRIBEDY, R.VENUGOPALAN, PRL108, 252301 (2012), PRC86, 034908 (2012)

- Yang-Mills equations determine: KRASNITZ, VENUGOPALAN, NUCL.PHYS. B557 (1999) 237
 - Initial gluon fields from color charges
 - Energy density after the collision
 - Early non-equilibrium time evolution

INITIAL STATE AND FLUID DYNAMICS

C.GALE, S.JEON, B.SCHENKE, P.TRIBEDY, R.VENUGOPALAN, PHYS.REV.LETT. 110, 012302 (2013)

- Compute energy-momentum tensor $T^{\mu\nu}$ of the classical fields
- Extract energy density and flow vector via $u_{\mu}T^{\mu\nu} = \varepsilon u^{\nu}$
- This provides the initial conditions for fluid dynamic simulations
- At the moment set initial $\Pi^{\mu
 u}=0$

INITIAL STATE AND FLUID DYNAMICS

C.GALE, S.JEON, B.SCHENKE, P.TRIBEDY, R.VENUGOPALAN, PHYS.REV.LETT. 110, 012302 (2013)

$$\eta/s = 0$$
 $\eta/s = 0.1$ $\eta/s = 0.2$

t = 0.40 fm

EVENT-BY-EVENT FLUID DYNAMICS

C.GALE, S.JEON, B.SCHENKE, P.TRIBEDY, R.VENUGOPALAN, PHYS.REV.LETT. 110, 012302 (2013)

- Evolve many initial shapes using viscous fluid dynamics
- Convert energy density to particles ("freeze-out")
- Determine v_n coefficients of particle distributions
- Average and compare to experimental data

AVERAGE AND RMS vn

ATLAS COLLABORATION, JHEP 1311 (2013) 183 CMS COLLABORATION, PRC 87(2013) 014902, ARXIV:1310.8651

ATLAS CMS

Event-plane method

Mean from distributions

EVENT-BY-EVENT FLOW

ATLAS COLLABORATION, JHEP 1311 (2013) 183 C. GALE, S. JEON, B.SCHENKE, P.TRIBEDY, R.VENUGOPALAN, PRL110, 012302 (2013)

20-25%

V2

V3

EVENT-BY-EVENT FLOW ATLAS COLLABORATION, JHEP 1311 (2013) 183

40-45% 100 ε₂ IP-Glasma 40-45% $(v_2/\langle v_2 \rangle), P(\epsilon_2/\langle \epsilon_2 \rangle)$ v_{2} IP-Glasma + MUSIC 10 v₂ ATLAS 1 p_T > 0.5 GeV 0.1 $|\eta| < 2.5$ 0.01 2.5 0 2 0.5 1.5 3 1 $v_2/\langle v_2 \rangle, \epsilon_2/\langle \epsilon_2 \rangle$ 100 40-45% ε₃ IP-Glasma $^{2}(v_{3}\langle v_{3}\rangle), P(\epsilon_{3}\langle \epsilon_{3}\rangle)$ v_3 IP-Glasma + MUSIC 10 v₃ ATLAS 1 $p_{T} > 0.5 \text{ GeV}$ 0.1 lηl < 2.5 0.01 1.5 2.5 0 2 3 0.5 1 $v_3/\langle v_3 \rangle, \epsilon_3/\langle \epsilon_3 \rangle$ 100 ϵ_4 IP-Glasma 40-45% $(v_4/\langle v_4 \rangle)$, $P(\epsilon_4/\langle \epsilon_4 \rangle)$ v_{4} IP-Glasma + MUSIC 10 v₄ ATLAS 1 $p_{T} > 0.5 \text{ GeV}$ 0.1 lŋl < 2.5 0.01 1.5 2.5 0 0.5 1 2 3 $v_4/\!\langle v_4\rangle\!,\,\epsilon_4/\!\langle \epsilon_4\rangle$

EVENT-BY-EVENT FLOW

ATLAS COLLABORATION, JHEP 1311 (2013) 183

EVENT-BY-EVENT FLOW

ATLAS COLLABORATION, JHEP 1311 (2013) 183

ALSO SEE TALK BY SOUMYA MOHAPATRA ON NON-LINEAR EFFECTS

ALSO SEE HUI WANG'S TALK

DEFORMED NUCLEI B. SCHENKE, P. TRIBEDY, R. VENUGOPALAN, ARXIV:1403.2232

Select ultra-central events based on neutrons in the ZDC

- Study correlation
 between v₂ and multiplicity
- MC-Glauber gets (anti-)correlation because of N_{coll} in $\frac{dN}{d\eta} = n_{pp} \left(x N_{coll} + (1-x) \frac{N_{part}}{2} \right)$

IP-Glasma finds weaker anti-correlation

DEFORMED NUCLEI • Uranium: prolate B. SCHENKE, P. TRIBEDY, R. VENUGOPALAN, ARXIV:1403.2232 • Gold: oblate

Au+Au, side-side

Au+Au, "tip-tip"

A. BZDAK, B. SCHENKE, P. TRIBEDY, R. VENUGOPALAN, PRC87, 064906 (2013)

p+A will look like this

SEE TALK BY DHEVAN RAJA GANGADHARAN (ALICE)

SYSTEM SIZE

A. BZDAK, B. SCHENKE, P. TRIBEDY, R. VENUGOPALAN, PRC87, 064906 (2013)

SEE TALK BY DHEVAN RAJA GANGADHARAN (ALICE)

SYSTEM SIZE

A. BZDAK, B. SCHENKE, P. TRIBEDY, R. VENUGOPALAN, PRC87, 064906 (2013)

SEE TALK BY DHEVAN RAJA GANGADHARAN (ALICE)

SYSTEM SIZE WITH MC-GLAUBER INITIAL CONDITIONS

P. BOZEK, W. BRONIOWSKI, PHYS.LETT. B720 (2013) 250-253

MC-Glauber model + hydro gets size in p+Pb ~ size in Pb+Pb

FOURIER HARMONICS IN p+Pb CMS COLLABORATION, PHYS.LETT. B724 (2013) 213-240

Open symbols: Pb+Pb Filled symbols: p+Pb

FOURIER HARMONICS IN p+Pb CMS COLLABORATION, PHYS.LETT. B724 (2013) 213-240

Open symbols: Pb+Pb Filled symbols: p+Pb

Red points: IP-Glasma + MUSIC

FOURIER HARMONICS IN p+Pb CMS COLLABORATION, PHYS.LETT. B724 (2013) 213-240

Open symbols: Pb+Pb Filled symbols: p+Pb

Red points: IP-Glasma + MUSIC

FOURIER HARMONICS IN p+Pb

Why doesn't it work? Two possibilities:

a) We neglected correlations from the initial state K. DUSLING, R. VENUGOPALAN, PHYS.REV. D87 054014 (2013)

They are there in IP-Glasma - just need to keep them

b) The proton is not spherical and its shape fluctuates

Will this give the right centrality dependence?

SUMMARY

- IP-Glasma + fluid dynamics does very good job in describing experimental data in A+A collisions
- v_n distributions in peripheral events are well described when nonlinear effects from the evolution are included
- Ultra-central collisions of deformed nuclei can give information on particle production mechanism
- Similar size in p+p and p+Pb agrees with ALICE HBT
- Within IP-Glasma+MUSIC model and ignoring initial state correlations, v_n in p+Pb are not well described

BACKUP

MULTIPLICITY DISTRIBUTIONS

B. SCHENKE, P. TRIBEDY, R. VENUGOPALAN, PHYS. REV. C89, 024901 (2014) CMS COLLABORATION, JHEP 1101, 079 (2011)

Multiplicity distributions in p+p and p+Pb collisions are not as wide as the experimental data Introduce fluctuation of color charge density Hadronization can also widen the distribution

ALICE COLLABORATION, J.PHYS. G38 (2011) 124047

SYSTEM SIZE

VISCOUS CORRECTION

Fraction of cells with viscous correction larger than 25% (50%) of the ideal term

IDENTIFIED PARTICLE SPECTRA

PARAMETER DEPENDENCIES B. SCHENKE, P. TRIBEDY, R. VENUGOPALAN, PHYS. REV. C89, 024901 (2014)

PARAMETER DEPENDENCIES B. SCHENKE, P. TRIBEDY, R. VENUGOPALAN, PHYS. REV. C89, 024901 (2014)

TEMPERATURE DEPENDENT η/s

One $(\eta/s)(T)$ will be able to describe both RHIC and LHC data Used parametrization not yet perfect: no surprise More detailed study needed - include different RHIC energies and LHC