Consequence of absorptive plasma on heavy quark energy loss and jet evolution in ultrarelativistic heavy ion collisions

30th Winter Workshop on Nuclear Dynamics

Galveston, TX

P.B. Gossiaux SUBATECH, UMR 6457

Université de Nantes, Ecole des Mines de Nantes, IN2P3/CNRS

with

J. Aichelin, M. Bluhm, Th. Gousset, M. Nahrgang, K. Werner

Motivation and context

- ➤ Most of the *interesting* HF observables so far: located at *intermediate* p_T (≈3 GeV-50 GeV)
- Intermediate p_T: hope that pQCD (or pQCD inspired models) apply (as compared to low p_T)
- Intermediate pT: mass effect still present and thus hope to learn something more as compared to large p_T

Approach pursued in our models... Unfortunately too many of them

=> Need for falsification (more observables; IQCD): Azimuthal correlations ?

Motivation and context

=> Need for classification and effective parameters

Insufficient control on energy loss theory in QCD

Basic ingredient in the derivation of QED collisional Eloss; transverse force In QCD: non perturbative « corrections » even at large HQ energy

Significant r-tail in the transverse force acting on the high E HQ

Our basic ingredients for HQ energy loss

Elastic Motivation: Even a fast parton with the largest momentum P will undergo collisions with moderate q exchange and large $\alpha_s(Q^2)$. The running aspect of the coupling constant has been "forgotten/neglected" in most of approaches

Insufficient control on energy loss theory

Non perturbative « corrections » even at large HQ energy

Our force is close to the one extracted from the free energy as a potential

=> Allow for some global rescaling of the rates: "K" fixed on experiment 6

Running α_s : some Energy-Loss values

	T(MeV) \p(GeV/c)	10	20
$\frac{dE_{_{coll}}(c/b)}{dE_{_{coll}}(c/b)}$	200	1 / 0.65	1.2 / 0.9
dx	400	2.1 / 1.4	2.4/2

≈ 10 % of HQ energy

Drag coefficient (inverse relax. time)

Transport Coefficient

... of expected magnitude to reproduce the data (we "explain" the transp. coeff. in a rather parameter free approach).

Elastic D mesons @ RHIC

=> Allow for some global rescaling of the rates: "K" fixed on experiment

Elastic D mesons @ RHIC

Elastic D mesons @ RHIC

Rather little contribution from the light quark in our treatment... but conclusion may depend on the parameters (m_a, wave function)

Coalescence according to extended $N_{\Phi} = \int \frac{d^3 p_q}{(2\pi\hbar)^3 E_q} \frac{p_q \cdot \hat{d\sigma}}{u_Q \cdot \hat{d\sigma}} f_q(x_Q, p_q) (\sqrt{2\pi}R_c)^3$ (PRC 79 044906) $\times F_{\Phi}(p_Q, p_q),$ [1]

Elastic for leptons @ RHIC

Good agreement for NPSE as well

Elastic for leptons @ RHIC

Some contribution from D meson rescattering ? (see J. Aichelin's talk)

Elastic Eloss @ RHIC

We "explain" it all provided we allow for a multiplication of our pQCD (inspired) cross section by a factor 2...

Induced Energy Loss

Generalized Gunion-Bertsch (NO COHERENCE) for finite HQ mass, dynamical light partons

Incoherent Induced Energy Loss

... & finite energy !

Gousset, Gossiaux & Aichein, arxiv 1307.5270

Finite energy lead to strong reduction of the radiative energy loss at intermediate p_T

Probability P of energy loss ω per unit length (T,M,...):

Caveat: no detailed balance implemented yet

{Radiative + Elastic} vs Elastic for D mesons @ RHIC

K coming closer to unity if radiation included

{Radiative + Elastic} vs Elastic for D mesons @ RHIC

Rather little contribution from the light quark in our treatment... but conclusion may depend on the parameters (m_a, wave function)

Coalescence according to extended $N_{\Phi} = \int \frac{d^3 p_q}{(2\pi\hbar)^3 E_q} \frac{p_q \cdot \hat{d\sigma}}{u_Q \cdot \hat{d\sigma}} f_q(x_Q, p_q) (\sqrt{2\pi}R_c)^3$ (PRC 79 044906) $\times F_{\Phi}(p_Q, p_q),$ [9]

{Radiative + Elastic} vs Elastic for leptons @ RHIC

Good agreement for NPSE as well

{Radiative + Elastic} vs Elastic for leptons @ RHIC

No lack of elliptic flow wrt pure elastic processes

Probability P of energy loss ω per unit length (T,M,...):

Conclusions from RHIC

Good consistency between NPSE and D mesons (10% difference in K values)...

- \succ ... within a model with mass hierarchy
- $\blacktriangleright \Delta E$ radiative < ΔE elastic

> Present data at RHIC cannot decipher between the 2 local microscopic E-loss models (elastic, elastic + radiative GB) \Rightarrow Not sensitive to the large- ω tail of the Energy-loss probability (thanks to initial HQ distribution)

23

Giving coherence a chance

d I

Coherent Induced Radiative

Formation time picture: for $I_{f,mult} > \lambda$, gluon is radiated coherently on a distance $I_{f,mult}$

Model: all N_{coh} scatterers act as a single effective one with probability $p_{Ncoh}(Q_{\perp})$ obtained by convoluting individual probability of kicks

$$\frac{d^2 I_{\text{eff}}}{dz \, d\omega} \sim \frac{\alpha_s}{N_{\text{coh}} \tilde{\lambda}} \ln \left(1 + \frac{N_{\text{coh}} \mu^2}{3 \left(m_g^2 + x^2 M^2 + \sqrt{\omega \hat{q}} \right)} \right)$$

 $\overline{\mathrm{d}z\mathrm{d}\omega}$ Suppression due 1.4 T=250 MeV. E=10GeV 1.2 to coherence 1.0 increases with GB 0.8 energy LPM 0.6 0.4 c-quark 0.2 5.0010.00 ω[GeV] 0.05 0.10 0.50 1.00 1.4 T=250 MeV. E=20GeV 1.2 1.0 GB 0.8 LPM 0.6 0.4 c-quark 0.2 ω [GeV] 5.0010.00 0.050.10 0.501.00 1.4 T=250 MeV, E=20GeV Suppression due 1.2 1.0 to coherence GB 0.8 decreases with LPM 0.6 increasing mass 0.4 b-quark 0.2 ω [GeV] 0.050.10 0.50 1.00 5.0010.00

arXiv:1209.0844

{Radiative + Elastic} vs Elastic for D mesons @ RHIC

=> Allow for some global rescaling of the rates: "K" fixed on experiment

{Radiative + Elastic} vs Elastic for D mesons @ RHIC

{Radiative + Elastic} vs Elastic for leptons @ RHIC

{Radiative + Elastic} vs Elastic for leptons @ RHIC

QGP properties from HQ probe at RHIC

Gathering all rescaled models (coll. and radiative) compatible with RHIC R_{AA}:

=> Discriminating power of B mesons

Larger mass hierarchy for radiative Eloss

=> Discriminating power of B mesons

Larger mass hierarchy for radiative Eloss

Bright future of RHIC

=> BES, dAu, Cu + Cu, Cu + Au

Still in our "to do list"... however:

Going LHC: EPOS as a background for MC@sHQ

EPOS: state of the art framework that encompass pp, pA and AA collisions

10 8 10 30 140 25 6 120 20 4 5 15 2 100 10 x in fm Beware: \neq color scales x in fm 0 80 0 5 -2 60 -4 -5 40 -6 -8 20 -10 -10 -10 -8 -6 -4 8 -2 6 10 -10 -5 0 5 10 y in fm y in fm Kolb Heinz (used previously) **EPOS**

Initial energy density @ RHIC (central Au-Au)

More realistic hydro and initial conditions => original HQ studies such as:

1) fluctuations in HQ observables (some HQ might « leak » through the « holes » in the QGP)

2) correlations between HF and light hadrons

Going LHC: EPOS as a background for MC@sHQ

Data at large pT seems to favor « Collisional only ». Counter intuitive

Comparison with model calculations (A Mischke)

- Energy loss models describe R_{AA} of prompt D mesons reasonably
- Indication for rising R_{AA} ?
- No/little shadowing (initial-state effect) is expected in this p_{T} range
- Rad.+dissoc.: R. Sharma, I. Vitev and B.W. Zhang, Phys. Rev. C80 (2009) 054902, Y. He, I. Vitev and B.W. Zhang, arXiv: 1105.2566 (2011)
- WHDG (coll.+rad. Eloss in anisotropic medium): W.A. Horowitz and M. Gyulassy, J. Phys. G38 (2011) 124114
- POWLANG (coll. Eloss using Langevin approach): W.M. Alberico, et al., Eur. Phyis J. C71,1666 (2011)
- BAMPS (coll. Eloss in expanding medium): O. Fochler, J. Uphoff, Z. Xu and C. Greiner, J. Phys. G38 (2011) 124152
- Coll. + LPM rad. energy loss: J. Aichelin et al., Phys. Rev. C79 (2009) 044906
- BDMPS-ASW: N. Armesto, A. Dainese, C.A. Salgado and U.A. Wiedemann, Phys. Rev. D71 (2005) 054027
- Coll. Eloss via D mesons resonances excitation + Hydro evolution: M. He, R.J. Fries and R. Rapp, arXiv:1204.4442

Andre Mischke (Utrecht)

QCD:

1. QCD analog of Bethe Heitler result established by Gunion & Bertsch (M=0) at high energy; third diagram involved...

... important as it contributes to populate the mid rapidity gap (large angle radiation)

2. QCD analog of LPM effects: BDMPS; main difference: dominant process are the ones for which the emitted gluon is rescattered:

$$\begin{array}{cccc} P & P' \\ \hline & & \\ & &$$

... leads to a complete modification of the formation times and radiation spectra, but these concepts still apply

LHC: the realm for coherence !

<u>3 regimes and various path length (L) dependences : (light q)</u>

→ a) Low energy gluons: Typical formation time ω/k_t^2 is smaller than mean free path λ : $\omega < \omega_{\text{LPM}} := \frac{\hat{q}\lambda^2}{2}$ Incoherent Gunion-Bertsch radiation

LHC: the realm for coherence !

<u>3 regimes and various path length (L) dependences : (light q)</u>

- a) Low energy gluons: Typical formation time ω/k_t^2 is smaller than mean free path λ : $\omega < \omega_{\text{LPM}} := \frac{\hat{q}\lambda^2}{2}$ Incoherent Gunion-Bertsch radiation
- → b) Inter. energy gluons: Produced **coherenty** on N_{coh} centers after typical formation time $t_f = \sqrt{\frac{\omega}{\hat{q}}} \Rightarrow N_{\text{coh}} = \frac{t_f}{\lambda} = \sqrt{\frac{\omega}{\omega_{\text{LPM}}}}$ leading to an effective reduction of the GB radiation spectrum by a factor $1/N_{\text{coh}}$

LHC: the realm for coherence !

<u>3 regimes and various path length (L) dependences : (light q)</u>

- a) Low energy gluons: Incoherent Gunion-Bertsch radiation
- b) Inter. energy gluons: Produced **coherenty** on $N_{\rm coh}$ centers after typical formation time $t_f = \sqrt{\frac{\omega}{\hat{q}}}$

→ c) High energy gluons: Produced mostly outside the QGP... nearly as in vacuum do $\sqrt{\frac{\omega}{\hat{q}}} > L \Rightarrow \omega > \omega_c := \frac{\hat{q}L^2}{2}$ not contribute significantly to the induced energy loss

LHC: the realm for coherence !

3 regimes and various path length (L) dependences : (light q)

A large part of radiative energy loss @ LHC still scales like the path length => Still makes sense to speak about energy loss per unit length (for a typical event) $\Delta E \simeq \pi C_s C_A \alpha^3 \mathcal{N} L^2 \left[\ln \left(\frac{\hat{q}_A L}{m_D^2} \right) + \ln \left(\frac{E}{\hat{q}_A L^2} \right) \right] 40$

Consequences of radiation damping on energy loss

Basic question: Implications of a finite lifetime of the radiated gluon?

Concepts

- > In QED or pQCD, damping is a NLO process (damping time $t_d >> \lambda$); neglected up to now.
- > However: formation time of radiation t_f increases with boost factor γ of the charge
- Expected effects when $t_f \approx t_d$ or $t_f > t_d$: in this regime, t_d should become the relevant scale (gluons absorbed being formed)

Consequences of radiation damping on energy loss

PRL 107 (2011): Revisiting LPM effect in ED using complex index of refraction, focussing on the radiation at time of formation $n^2(\omega) = 1 - m^2/\omega^2 + 2i\Gamma/\omega$

Allows for first phenomenological study in QCD case

Formation time of radiated gluon

New regimes when including gluon damping

Consequences on the power spectra

Consequences for mesons at LHC (central)

Damping of radiated gluons reduces the quenching of D mesons

QGP properties from HQ probe at LHC

Gathering all rescaled models (coll. and radiative) compatible with RHIC R_{AA}:

QGP properties from HQ probe at LHC

Gathering all rescaled models (coll. and radiative) compatible with RHIC R_{AA}:

Self consistency

RHIC « reference »: no effect seen for Γ =0.75T

Conclusion: Global picture for finite path length L Eloss

Consequences on the c vs b observable

RHIC « reference »: no effect seen for Γ =0.75T

Ideal situation to « reveal » Eloss mechanism: initiating one HQ in QGP with a fixed p_T...

Consequences on the observables: p_t-p_tbar correlations

Pb-Pb @ 2.76 TeV; 40-60%. Toy study: back to back c-cbar

(similar path length for most of HQ produced in the core of the reaction)

Consequences on the observables: p_t-p_tbar correlations

Pb-Pb @ 2.76 TeV; 40-60%. Toy study: back to back c-cbar

