

A Large Ion Collider Experiment

European Organisation for Nuclear Research

Results on thermalisation and flow from ALICE

Anthony Timmins for the ALICE Collaboration

The 30th Winter Workshop on Nuclear Dynamics

Overview

- 1. ALICE detectors and their performance
- 2. Identified particle production and thermalisation
 - ✓ Kinetic freeze out and radial flow in Pb-Pb
 - ✓ Chemical freeze out temperatures
 - ✓ Radial flow searches in p-Pb collisions
- 3. Flow harmonics and initial conditions
 - $\sqrt{v_n}$ fluctuations
 - ✓ Chiral Magnetic Effect (CME) searches
 - ✓ Event shape engineering
 - ✓ Multi-particle correlations and mixed harmonics
 - ✓ Searches for azimuthal flow in p-Pb and pp collisions

The ALICE detector

PID capabilities

Angular correlation capabilities

Highly uniform φ distribution of midrapidity tracks.

- Reaction plane resolution
 - Determined with various detectors
 - ✓ Close to 1 in best case

Identified particle production and thermalisation

Provide key information on freeze-out dynamics

- Spectral shapes vs. mass => Radial flow and kinetic freeze-out temperatures
- Yields and ratios => Chemical freeze-out temperatures

Identified particle spectra

1/N_{ev} 1/2 π p_T d² N/(dp_Tdy) (GeV/c)⁻¹

Data/Model

- Central Pb-Pb π,K, p spectra published last year
 - ✓ $K^0_{S,}$ Λ, Ξ and Ω spectra just submitted for publication
 - ✓ arXiv's 1307.6796, 1307.5543 and 1307.5530
- Shallower slopes compared to RHIC data...
- Blast-wave model used to obtain radial flow velocity:
 - \checkmark < β_T > = 0.65c
 - ✓ 10% higher than RHIC

 \checkmark T_{kinetic} = 80-95 MeV

Chemical freeze-out fits

Phys. Rev. Lett. 109 (2012) 252301

- Chemical freeze-out fits with just π,K, p data:
 - ✓ T_{ch} ~ 170 MeV
 - ✓ Similar to RHIC data

Deviations observed for proton data...

Inclusion of particles with higher mass

Difficult to fit all yields well with common T_{chem}
 ✓ Higher T_{chem} suits mulit-strange, lower T_{chem} suits proton and Λ

- K^{*0} not included in fit...
- Particle dependent T_{chem}? Differences due to re-scattering effects

$< p_T > in pp, p-Pb and Pb-Pb collisions$

- □ Hierarchy observed.
- Smaller systems increase more rapidly.
- At high N_{ch}
 - pp selects on type of production of process (jets, MPIs etc)
 - ✓ p-Pb selects processes+ geometry
 - ✓ Pb-Pb selects geometry

ALI-PUB-55941

Phys. Lett B 727 (2013) 371–380

Radial flow searches in p-Pb in collisions

Resembles Pb-Pb: mean p_T increases with mass of particle.

- ✓ Blast wave fits $<\beta_T> \sim 0.5c$ central p-Pb
- ✓ Similar values observed in pp

Azimuthal flow and initial conditions

- Many tools to investigate flow and flow fluctuations:
 - ✓ Flow cumulants
 - \checkmark Unfolded v₂ distributions
 - Multi-particle correlations and mixed harmonics

 $v_n = \langle \cos[n(\varphi - \psi_n)] \rangle$

Cumulants and flow coefficients

- Cumulants formed from moments of v_n distribution.
 - $c_n \{2\} = \langle \langle 2 \rangle \rangle$ = $\langle v_n \rangle^2 + \sigma_{vn}^2$ $c_n \{4\} = \langle \langle 4 \rangle \rangle - 2 \langle \langle 2 \rangle \rangle^2$ $c_n \{6\} = \langle \langle 6 \rangle \rangle - 9 \langle \langle 4 \rangle \rangle \langle \langle 2 \rangle \rangle + 12 \langle \langle 2 \rangle \rangle^3$

 Sensitivity to few particle correlations (M=Multiplicity):

$$c_n\{m\} \propto \frac{1}{M^{m-1}}$$

Flow coefficients formed from cumulants

$$v_n\{2\} = \sqrt{c_n\{2\}}$$

$$v_n\{4\} = \sqrt[4]{-c_n\{4\}}$$

$$v_n\{6\} = \sqrt[6]{\frac{1}{4}c_n\{6\}}$$

□ $\sigma_{v2}/\langle v_2 \rangle$ can be approximated from flow coefficients

$$R_n = \sqrt{\frac{v_n \{2\}^2 - v_n \{4\}^2}{v_n \{2\}^2 + v_n \{4\}^2}}$$

v₂ fluctuations

- □ Differences in v_2 {2} and v_2 {4} arise from v_2 fluctuations
 - \checkmark Strength of flow fluctuations σ_{v2} can also be determined

 v_2 {4}~ v_2 {6} ~ v_2 {8} characteristic of **Bessel Gaussian** form for v_2 fluctuations

v_2 and v_3 fluctuations

Large fluctuations in v₂² and v₃² observed event by event

✓ Appear largely independent

- 2 particle correlations in circled events dominated by v₂ and v₃
 - ✓ Allows v_n distributions to be obtained...

Pb-Pb $\sqrt{s_{NN}}$ = 2.76 TeV, 4-5% central

Unfolded v₂ distributions

- Unfolding removes effects of limited statistics
 - ✓ Expected to reflect eccentricity fluctuations of initial state (arix:1212.1008)
 - ✓ Bessel Gaussian fits work nearly always.

Multi-particle correlations of v₁ and v₃

 Multi-particle correlations v_n{4}, v_n{6}, and v_n{8} less sensitive to non-flow

Non zero signals observed for n=1,2 and 3

↓ v₁{4}~v₁{6}~v₃{4} ~v₃{6}...

ALI-DER-42805

v₁ vs. reaction plane published Phys. Rev. Lett. 111 (2013) 232302

18

q_{n,a}

UNIVERSITY of

M = multiplicity

ALICE

Event shape engineering

ALI-PERF-27677

- Appears to work in data
 - ✓ Select events with low/high q_2 in VZERO
 - ✓ Observe low/high v_2 measurements in TPC...

Event shape engineering

- Spectra shape appears to change with q₂
 - \checkmark <p_T> increases with v₂
 - No obvious mass \checkmark dependence
- Due to correlation between $< \epsilon_2 >$ and $< R^2 > ?$
 - High $<\epsilon_2>$, small $<\mathbb{R}^2>$, \checkmark greater radial pressure gradient?
- Other observables we can study w.r.t q_2 ?

ALI-PREL-32211

Searches for azimuthal flow in p-Pb collisions

□ Central – peripheral di-hadron correlations reveal double ridge

- \checkmark π , K, and p v₂ can be extracted
- $\checkmark~$ Mass ordering at low p_{T}
- √ Cr

ALICE

✓ Cross over of π and p v₂

Measurements of v₂{SP} in min-bias pp collisions

- v_2 {SP} allows $\Delta \eta$ gap to be placed
 - ✓ Suppress short range correlations

Small mass splitting observed even though non-flow dominates

Summary

- 1 Comprehensive set of spectra and flow measurements from ALICE
 - ✓ Strong constraints on initial conditions and global event characteristics
- 2 Identified particle production,
 - ✓ Radial flow 0.65c, 10% higher than RHIC,
 - Tension with assumption of common chemical freeze-out temperatures for different particle species
 - ✓ "Radial flow features" observed in p-Pb spectra
- 3 Angular correlations and flow
 - \checkmark v₂ fluctuations appear to follow Bessel Gaussian form
 - \checkmark Correlation observed between v₂ and spectra shapes
 - \checkmark Non zero correlations observed between $\psi_{1,}\psi_{2}$ and ψ_{3} planes
 - \checkmark Mass ordering observed for v₂ in p-Pb collisions

