

The hidden secrets of the event-shape fluctuations

Jiangyong Jia

with Peng huo and Soumya Mohapatra arxiv:1311.7091, 1402.6680, 1403.6077

Brookhaven National Laboratory

Office of Science | U.S. Department of Energy

Geometry and harmonic flow

- How $(\varepsilon_n, \Phi_n^*)$ are transferred to (v_n, Φ_n) ?
 - What is the nature of final state (non-linear) dynamics?
- The nature of longitudinal flow dynamics?

Event-by-event flow observables

$$\frac{dN}{d\phi} \propto 1 + 2\sum_{n} v_n \cos n \left(\phi - \Phi_n\right)$$

Many little-bang events

$$p(v_n, v_m, \dots, \Phi_n, \Phi_m, \dots) = \frac{1}{N_{\text{evts}}} \frac{dN_{\text{evts}}}{dv_n dv_m \dots d\Phi_n d\Phi_m \dots}$$

$$\frac{dN_{\text{evts}}}{d\Phi_1 d\Phi_2 \dots d\Phi_l} \propto \sum_{c_n = -\infty}^{\infty} a_{c_1, c_2, \dots, c_l} \cos(c_1 \Phi_1 + c_2 \Phi_2 \dots + c_l \Phi_l)$$
$$a_{c_1, c_2, \dots, c_l} = \langle \cos(c_1 \Phi_1 + c_2 \Phi_2 + \dots + c_l \Phi_l) \rangle$$
$$\cos(c_1 \Phi_1 + 2c_2 \Phi_2 \dots + lc_l \Phi_l) \rangle, c_1 + 2c_2 \dots + lc_l = 0.$$

JHEP11(2013)183

EbyE v_n distribution: $p(v_2)$, $p(v_3)$, $p(v_4)$

Soumya's talk on Monday

Event-plane correlation: $p(\Phi_n, \Phi_m)$ and $p(\Phi_n, \Phi_m, \Phi_L)$

How $(\varepsilon_n, \Phi_n^*)$ are transferred to (v_n, Φ_n) ?

• Flow response is linear for v_2 and v_3 : $v_n \propto \varepsilon_n$ and $\Phi_n \approx \Phi_n^*$ i.e.

arXiv:1111.6538 $v_2 e^{-i2\Phi_2} \propto \epsilon_2 e^{-i2\Phi_2^*}, v_3 e^{-i3\Phi_3} \propto \epsilon_3 e^{-i3\Phi_3^*}$

How $(\varepsilon_n, \Phi_n^*)$ are transferred to (v_n, Φ_n) ?

- Flow response is linear for v_2 and v_3 : $v_n \propto \varepsilon_n$ and $\Phi_n \approx \Phi_n^*$ i.e. arXiv:1111.6538 $v_2 e^{-i2\Phi_2} \propto \epsilon_2 e^{-i2\Phi_2^*}$, $v_3 e^{-i3\Phi_3} \propto \epsilon_3 e^{-i3\Phi_3^*}$
- Higher-order flow arises from EP correlations., e.g. :

Can we do better?

$$p(v_n, v_m, \dots, \Phi_n, \Phi_m, \dots) = \frac{1}{N_{\text{evts}}} \frac{dN_{\text{evts}}}{dv_n dv_m \dots d\Phi_n d\Phi_m \dots}$$

Can we do better?

- Variation of event shape at fixed centrality much bigger than Variation of mean across the full centrality range!!
 - All of this information has been averaged out!

Can we do better?

 Variation of event shape at fixed centrality much bigger than Variation of mean across the full centrality range!!

All of this information has been averaged out!

Hidden correlations in fixed-centrality

Pb+Pb b=10fm

- Correlation already exist in the initial state
 - e.g. anti-correlation between ε_2 and ε_3 .
- They are expected to influence the final state.

Event-shape selection technique

Schukraft, Timmins, and Voloshin, arXiv:1208.4563

Huo, Mohapatra, JJ arxiv:1311.7091

$$\vec{q}_n = \frac{1}{\Sigma w} (\Sigma w \cos n\phi_n, \Sigma w \sin n\phi_n), w = \mathbf{p}_T, \qquad q_n = \left| \vec{q}_n \right| \Rightarrow \frac{\Sigma w \mathbf{v}_n}{\Sigma w}$$

AMPT model

- AMPT model: Glauber+HIJING+transport
 - Has fluctuating geometry and collective flow
 - Longitudinal fluctuations and initial flow

Event shape selection accuracy in AMPT

S

Events with certain v_2, v_3

$$\vec{q}_n = \frac{1}{\Sigma w} (\Sigma w \cos n\phi_n, \Sigma w \sin n\phi_n), w = p_T$$

- Fixed impact parameter b=8fm
- Divide events into 10 equal bins
- $<\epsilon_2>$ vary by a factor of 3

12

$v_2(\eta)$: select on ε_2

Flow suppressed

 $v_2(\eta)|_{\eta>0}$ when EP in -6<q<-2 $v_2(\eta)|_{\eta<0}$ when EP in 2<q<6 $v_2(\eta)|_{|\eta|>2}$ when EP in |η|<1

$v_2(\eta)$: select on ϵ_2

Flow suppressed

 $v_2(\eta)|_{\eta>0}$ when EP in -6< η <-2 $v_2(\eta)|_{\eta<0}$ when EP in 2< η <6 $v_2(\eta)|_{|\eta|>2}$ when EP in $|\eta|<1$

Symmetric distribution expected

$v_2(\eta)$: compare with selection on q_2

Suppression of flow in the selection window

enhancement of flow in the selection window

What is the origin of $v_2(\eta)$ asymmetry?

- Suppression/enhancement of flow in the selected window
- Decreasing response to flow selection outside the selection window

Dependence of $v_3(\eta)$ on q_2 in fixed centrality

• v_3 anti-correlated with $v_2 \rightarrow$ reflection of $p(\varepsilon_2, \varepsilon_3)$

Щ

Two-Plane correlation selected on q₂

Two-Plane correlation selected on q₂

What is the origin of $v_2(\eta)$ asymmetry?

- Suppression/enhancement of flow in the selected window
- Decreasing response to flow selection outside the selection window

Longitudinal particle production

wounded nucleon model Bialas, Bzdak, Zalewski, Wozniak.... STAR/PHOBOS

 Assumes that after the collision of two nuclei, the secondary particles are produced by independent fragmentation of wounded nucleons

Emission function of one wounded nucleon

Forward/backward eccentricity fluctuations

Energy density profile in xy naturally interpolates between two limits

P.Huo, JJ 1403.6077

$$\rho(x, y, \eta) = f^{\mathrm{F}}(\eta)\rho_{\mathrm{F}}(x, y) + f^{\mathrm{B}}(\eta)\rho_{\mathrm{B}}(x, y)$$

 Fluctuations of participants in the two nuclei are not the same

$$\varepsilon_m^{\mathrm{F}}, \Phi_m^{*\mathrm{F}} \varepsilon_m^{\mathrm{B}}, \Phi_m^{*\mathrm{B}} \varepsilon_m, \Phi_m^{*}$$

 $N_{\mathrm{part}}^{\mathrm{F}}, N_{\mathrm{part}}^{\mathrm{B}}, N_{\mathrm{part}}$

• So the forward event shape more correlated with $\varepsilon_m^F, \Phi_m^{*F}$ and vice versa

Consequence.....

 $\rho(x, y, \eta) = f^{\mathrm{F}}(\eta)\rho_{\mathrm{F}}(x, y) + f^{\mathrm{B}}(\eta)\rho_{\mathrm{B}}(x, y)$ $dN/d\eta \propto f^{\mathrm{F}}(\eta)N_{\mathrm{part}}^{\mathrm{F}} + f^{\mathrm{B}}(\eta)N_{\mathrm{part}}^{\mathrm{B}}.$

• Eccentricity vector interpolates between $\overrightarrow{\varepsilon}_n^F$ and

$$\vec{\epsilon}_n^{\text{tot}}(\eta) \approx \alpha(\eta) \vec{\epsilon}_n^{\text{F}} + (1 - \alpha(\eta)) \vec{\epsilon}_n^{\text{B}} \equiv \epsilon_n^{\text{tot}}(\eta) e^{in\Phi_n^{\text{*tot}}(\eta)}$$

$$\alpha(\eta) = \frac{f^{\mathrm{F}}(\eta)N_{\mathrm{part}}^{\mathrm{F}}\langle r^{n}\rangle^{\mathrm{F}}}{f^{\mathrm{F}}(\eta)N_{\mathrm{part}}^{\mathrm{F}}\langle r^{n}\rangle^{\mathrm{F}} + f^{\mathrm{B}}(\eta)N_{\mathrm{part}}^{\mathrm{B}}\langle r^{n}\rangle^{\mathrm{B}}}$$

• Equal to $\vec{\varepsilon}_n$ only at $\eta=0$

• Assuming hydro-response to be linear then (good for v2 and v3)

$$\vec{v}_n(\eta) \approx c_n(\eta) \left[\alpha(\eta) \vec{\epsilon}_n^{\mathrm{F}} + (1 - \alpha(\eta)) \vec{\epsilon}_n^{\mathrm{B}} \right]$$

FB eccentricity fluctuations from Glauber

Significant FB asymmetry:

$$\varepsilon_n^{\mathrm{F}} \neq \varepsilon_n^{\mathrm{B}}$$

Significant twist:

$$\Phi_n^{*\mathrm{F}} \neq \Phi_n^{*\mathrm{B}}$$

What AMPT tell us?

- Twist in initial geometry appears as twist in the final state flow
 - Participant plane angles:

 $\Phi_n^{*\mathrm{F}} = \Phi_n^{*\mathrm{B}}$

• Final state event-plane angles

$$\Psi_n^{\mathrm{F}} = \Psi_n^{\mathrm{B}}$$

Initial twist survives

How to measure the twist angle

Non-vanishing sine term if there is twist

• Used to extract the twist angle in η .

t

• Need event selection in order to see it.

$$\Theta_n \in \{\Phi_n^{*F}, \Phi_n^{*B}, \Phi_n^*\}$$

$$v_n^{c}(\eta) = \langle \cos n (\phi(\eta) - \Theta_n) \rangle$$

$$v_n^{s}(\eta) = \langle \sin n (\phi(\eta) - \Theta_n) \rangle$$

$$v_n(\eta) = \sqrt{(v_n^{c}(\eta))^2 + (v_n^{s}(\eta))^2}$$

$$\operatorname{an} \left[n \Delta \Phi_n^{\operatorname{rot}}(\eta) \right] = \frac{\langle \sin n (\phi(\eta) - \Theta_n) \rangle}{\langle \cos n (\phi(\eta) - \Theta_n) \rangle} = \frac{v_n^{s}(\eta)}{v_n^{c}(\eta)}$$

Select initial event-shape

Select events with different asymmetry and twist at INITIAL STATE And then measure relative to the participant planes

Type-2

Type-3

$$\Phi_n^{*F} > \Phi_n^{*B} \quad \varepsilon_n^F \approx \varepsilon_n^B$$

P.Huo, JJ 1402.6680, 1403.6077

 Residual difference indicate other EP-decorrelation sources orthogonal to the event-shape selection

Results for inclusive events

 Results depend on which PP used, clearly suggest the influence of decorrelation effects.

Implications

- System not boost-invariant EbyE not only for $dN/d\eta$, but also flow
- Longitudinal decorrelation effects breaks the factorization, despite being initial state effects. $V_{n\Delta}(\eta_1, \eta_2) \neq v_n(\eta_1)v_n(\eta_2)$
- Decorrelation effects much stronger in p+A and Cu+Au system

Summary

- Event-shape fluctuations are much richer than what is currently studied
 - Strong fluctuation/correlation between v_n and Φ_n s within given centrality

$$p(v_n, v_m, \dots, \Phi_n, \Phi_m, \dots) = \frac{1}{N_{\text{evts}}} \frac{dN_{\text{evts}}}{dv_n dv_m \dots d\Phi_n d\Phi_m \dots}$$

Rich patterns forward/backward EbyE flow fluctuations:

$$\vec{v}_n(\eta) \approx c_n(\eta) \left[\alpha(\eta) \vec{\epsilon}_n^{\mathrm{F}} + (1 - \alpha(\eta)) \vec{\epsilon}_n^{\mathrm{B}} \right]$$

Event-shape selection and event twist techniques

- These initial state fluctuations are very large (comparable to the entire centrality dependence) and they are expected to survive collective expansion. We demonstrated this via the AMPT model
- New avenue to study initial state fluctuations, particle production and collective expansion dynamics
- More detailed study via EbyE hydro are needed.

$p(v_n)$ distributions

Probability distributions for v_2 , v_3 and v_4 in many centrality ranges

JHEP11(2013)183

Event-plane correlations

Event-plane correlators with rich centrality dependence

Rapidity fluctuations of flow

• Previous study suggest EP correlation weakens with larger η gap in AMPT

• $v_n(\eta)$ for events selected on ε_n or q_n show direct evidence for decorrelation.

$v_n(\eta)$ shape for all n: select on q_2

- Anti-correlation with $v_3 \rightarrow$ reflection of $p(\varepsilon_2, \varepsilon_3)$
- v₄, v₅, v₆ correlates with v₂ selection, direct measure of non-linear effects!!

Type-4

• Similar to Type-3

 But cross point is pushed to backward rapidity. _

Compare to Event Plane result

В

Μ

F