Thermal fluctuations in heavy-ion collisions

Clint Young with Joseph Kapusta University of Minnesota April 11, 2014 Fluctuation-dissipation and the importance of noise Thermal noise in heavy-ion collisions Where does thermal noise come from?

Fluctuation-dissipation and the importance of noise The relations between Green functions

Numerical solution of fluctuating hydrodynamics The shape of second-order noise Momentum eccentricity in LHC 10-20%

Conclusions

Kapusta, Müller, Stephanov: Thermal noise exists in viscous relativistic fluids, represented by $S_{\text{heat}}^{\mu\nu}$ and $S_{\text{visc.}}^{\mu\nu}$ (in the Eckart frame) and $S^{\mu\nu}$ and I^{μ} in the (Landau-Lifshitz frame).

 $K(\Delta \eta) \propto \left\langle \frac{dN}{d\eta}(\eta + \Delta \eta) \frac{dN}{d\eta}(\eta) \right\rangle - \left\langle \frac{dN}{d\eta} \right\rangle^2$, the two-particle correlation as a function of rapidity gap, has a contribution from thermal noise.

Analytical calculations possible for the Bjorken expansion of an ultrarelativistic gas.

Thermal noise in ultrarelativistic gases

The relations between Green functions

The effect of perturbations on every physical quantity is determined by a *specific* Green function:

• Given
$$\delta \hat{H}(t) = \int d^3x j(\mathbf{x}, t) \hat{\phi}(\mathbf{x}, t), \left\langle \delta \hat{\phi} \right\rangle = \int d^4x' G_R(x - x') j(x'),$$

where $G_R(x) \equiv -i\theta(t) \left\langle [\hat{\phi}(x), \hat{\phi}(0)] \right\rangle.$

For the same
$$\delta \hat{H}(t)$$
, transition rates determined with $G_{>}(t) \equiv -i \int dt \left\langle \hat{\phi}(t) \phi(\hat{0}) \right\rangle \equiv G_{<}(-t).$

• Variances determined with $G_{\mathcal{S}}(t) \equiv \frac{1}{2} \left\langle \{\hat{\phi}(t), \hat{\phi}(0)\} \right\rangle$.

In **x** and t, several Green functions exist, each with their own domain of applicability.

The relations between Green functions

Relationships become clearer in Fourier space:

$$\begin{split} \operatorname{Im} G_{R}(\omega) &= -\frac{i}{2} \left[-i \int dt \ \theta(t) e^{i\omega t} \left\langle \left[\hat{\phi}(t), \hat{\phi}(0) \right] \right\rangle \right. \\ &\left. -i \int dt \ \theta(t) e^{-i\omega t} \left\langle \left[\hat{\phi}(t), \hat{\phi}(0) \right] \right\rangle^{*} \right] = -\frac{1}{2} \left[\int dt \ \theta(t) e^{i\omega t} \left\langle \left[\hat{\phi}(t), \hat{\phi}(0) \right] \right\rangle \right. \\ &\left. + \int dt \ \theta(t) e^{-i\omega t} \left\langle \left[\hat{\phi}(0), \hat{\phi}(t) \right] \right\rangle \right] = -\frac{1}{2} \int dt \ e^{i\omega t} \left\langle \left[\hat{\phi}(t), \hat{\phi}(0) \right] \right\rangle \\ &= -\frac{1}{2} (1 - e^{-\omega/T}) \int dt \ e^{i\omega t} \left\langle \hat{\phi}(t) \hat{\phi}(0) \right\rangle \\ &= -\frac{i}{2} (1 - e^{-\omega/T}) G_{>}(\omega). \end{split}$$

Hermiticity and the KMS relation lead to algebraic relations between Green functions in Fourier space.

Going between coordinate and momentum space relates physics to facts from complex analysis:

Coordinate space	Momentum space
Causality	Analyticity of $G_R(\omega)$ in the upper-half plane
KMS relation	Detailed balance
Fluctuation-dissipation	$G_{S}(\omega) = -(1 + 2n_{B}(\omega)) \operatorname{Im} G_{R}(\omega)$

In particular the correlation function $G_5 \equiv \frac{1}{2} \left\langle \{\hat{\phi}(t), \hat{\phi}(0)\} \right\rangle$ (fluctuations) have an easy relationship to $\text{Im} G_R(\omega)$ (the dissipation) in momentum space.

Viscosity and thermal noise

"Why didn't I notice thermal noise in liquids before?"

$$\frac{1}{2}\left\langle\left\{\delta u_{T}^{i}(x),\delta u_{T}^{j}(0)\right\}\right\rangle\approx\frac{T}{e+\rho}\left(\frac{\pi(e+\rho)}{\eta|t|}\right)^{3/2}\exp\left(-\frac{(e+\rho)|\mathbf{x}|^{2}}{4\eta|t|}\right)\frac{2}{3}\delta^{ij}$$

For non-relativistic gases, $e + p \approx \rho$, making T/ρ tiny.

For ultrarelativistic gases, $\frac{4\eta|t|}{e+p}$ often small compared to length scales of interest.

In heavy-ion collisions, length and time scales $\sim 1 \text{ fm} \sim \frac{1}{T}$, $e \sim p \sim T^4$, $s \sim T^3$: no mass scale exists to suppress the importance of fluctuations, only the smallness of η/s can.

Noise and observables

Now $T^{\mu\nu} = T^{\mu\nu}_{av.} + \delta T^{\mu\nu}$:

Each solution for a given $\delta T^{\mu\nu}$ corresponds to *one event* at a heavy-ion collider. The ensemble of $\delta T^{\mu\nu}$ is approximated by a data set. Most observables are averages of these sets.

 $\langle \delta T^{\mu\nu} \rangle = 0 \rightarrow$ hydrodynamical noise has *no effect* on one-particle observables dN/dp_T , dN/dy, averaged over many events.

 $\langle \delta T^{\mu\nu} \delta T^{\alpha\beta} \rangle \neq 0 \rightarrow$ noise affects two-particle correlations even after averaging over events.

 $\delta T^{\mu\nu} \neq 0 \rightarrow$ noise drives non-trivial variance of all observables, within a centrality class.

The shape of second-order noise

The Israel-Stewart formalism of the hydrodynamical equations

$$egin{array}{lll} \partial_\mu(\mathcal{T}^{\mu
u}_{
m ideal}+\partial_\mu W^{\mu
u})&=&0\ (u\cdot\partial)W^{\mu
u}&=&-rac{1}{ au_\pi}(W^{\mu
u}-\Pi^{\mu
u}), \end{array}$$

where $\Pi^{\mu\nu} = \eta \Delta^{\mu} u^{\nu} + \Delta^{\nu} u^{\mu} - \frac{2}{3} (\partial \cdot u) \Delta^{\mu\nu}$ is the first-order viscous energy-momentum and τ_{π} is the relaxation time. What is the correlation function for thermal noise here?

Noise in energy-momentum: $T^{\mu\nu} + \Xi^{\mu\nu}$: Current conservation $(\partial_{\mu}(T^{\mu\nu} + \Xi^{\mu\nu}) = 0)$ and the fluctuation-dissipation relation give the autocorrelation of thermal noise (in the fluid rest frame):

$$\left\langle ((\tau_{\pi}\partial_{t}\Xi^{ij}(x) + \Xi^{ij}(x))(\tau_{\pi}\partial_{t}\Xi^{kl}(x') + \Xi^{kl}(x'))\right\rangle$$
$$= \left[2\eta T(\delta^{ik}\delta^{jl} + \delta^{il}\delta^{jk}) + 2(\zeta - 2\eta/3)T\delta^{ij}\delta^{kl}\right]\delta^{4}(x - x').$$

Colored noise in numerical simulations

This makes the noise autocorrelation *colored*:

$$\begin{split} \left\langle \Xi^{ij}(x)\Xi^{kl}(x')\right\rangle &= \left[2\eta T(\delta^{ik}\delta^{jl}+\delta^{il}\delta^{jk})+2(\zeta-2\eta/3)T\delta^{ij}\delta^{kl}\right] \\ &\times \quad \delta^3(x-x')\frac{\exp(-|t-t'|/\tau_{\pi})}{2\tau_{\pi}}; \end{split}$$

the noise decorrelates slowly in time. Numerically, it is easier to use the first equation to define a differential equation for $\Xi^{\mu\nu}$:

$$\tau_{\pi} \dot{\Xi}^{\mu\nu} = -(\Xi^{\mu\nu} - \xi^{\mu\nu}),$$

where $\xi^{\mu\nu}$ is now white noise.

MUSIC for 3+1-dimensional viscous hydrodynamics

Noise breaks boost invariance \rightarrow (3+1)-dimensional simulation necessary for $\mathcal{K}(\Delta\eta, \Delta\phi)$.

Fluctuations related to dissipation \rightarrow viscous hydrodynamics necessary.

MUSIC (Schenke, Jeon, and Gale) solves the Israel-Stewart model of viscous hydrodynamics in (τ, x, y, η) , uses lattice EOS, determines 3-dimensional freeze-out surface for hadron production. τ =6.0 fm/c, ideal

Calculating linearized fluctuations numerically

Thermal noise has been calculated in the limit of linear response: the equations for $\delta T^{\mu\nu}_{id.}$ and $\delta W'^{\mu\nu} = W^{\mu\nu} + \Xi^{\mu\nu}$ should be linearized:

$$\partial_{t}\delta T_{\mathrm{id.}}^{t\nu} = -\partial_{i}\delta T_{\mathrm{id.}}^{i\nu} - \partial_{\mu}\delta W^{\prime\mu\nu},$$
$$u_{0}^{0}\frac{\partial}{\partial t}\delta W^{\prime\mu\nu} = -(\mathbf{u}_{0}\cdot\nabla)\delta W^{\prime\mu\nu}$$
$$-\Delta_{0\alpha}^{\mu}\Delta_{0\beta}^{\nu}\left(\frac{1}{\tau_{\pi}}\left(\delta W^{\prime\alpha\beta} - \delta S^{\alpha\beta} - \xi^{\alpha\beta}\right)\right)$$
$$-\frac{4}{3}\left(\partial\cdot u_{0}\right)\delta W^{\prime\alpha\beta} - \frac{4}{3}\left(\partial\cdot\delta u\right)W_{0}^{\alpha\beta}\right).$$

The equations are discretized: $\xi(x) \rightarrow \xi_i = \frac{1}{\Delta V \Delta t} \int d^4 x \xi(x)$. $\langle \xi(x)\xi(x') \rangle \propto \delta^4(x-x') \rightarrow \left\langle \xi^i \xi^j \right\rangle \propto \frac{1}{\Delta V \Delta t}$:

hyperbolic equations with large gradients and sources.

MUSIC with noise: some first results

$\delta P/P(x, y, \tau)$, in a 10-20% Pb+Pb collision.

MUSIC with noise: some first results

$\delta P/P(y, \eta, \tau)$, in a 10-20% Pb+Pb collision.

One-particle observables

$$\langle \Xi^{\mu
u}
angle =$$
 0: averaging 70 runs,

The variance of v_2

 $\epsilon_{p}=\frac{\langle T^{xx}-T^{yy}\rangle}{\langle T^{xx}+T^{yy}\rangle}$ and $\frac{2\langle T^{xy}\rangle}{\langle T^{xx}+T^{yy}\rangle}$ added in quadrature:

- Hydrodynamical noise in heavy-ion collisions produces a quiet but important correlation in heavy-ion collisions, capable of providing independent measurements of viscosity.
- Thermal noise contributes to event-by-event variance of v_2 .
- Simulations with initial and freeze-out fluctuations necessary to find signal of hydrodynamical noise in experimental observables.

References I

- L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, *Statistical Physics Part 2, Landau and Lifshitz Course of Theoretical Physics Volume 9,* 1980 Pergamon Press plc.
- Joseph I. Kapusta and Charles Gale, *Finite Temperature Field Theory: Principles and Applications*, Cambridge University Press, 2006.
- B. Schenke, S. Jeon and C. Gale, Phys. Rev. C **82**, 014903 (2010) [arXiv:1004.1408 [hep-ph]].
- D. T. Son and D. Teaney, JHEP 0907, 021 (2009) [arXiv:0901.2338 [hep-th]].
- J. I. Kapusta, B. Muller and M. Stephanov, Phys. Rev. C **85**, 054906 (2012) [arXiv:1112.6405 [nucl-th]].
- W. Rümelin, *SIAM Journal on Numerical Analysis* **19**, No. 3 (Jun., 1982), pp. 604-613

B. Schenke, S. Jeon and C. Gale, Phys. Rev. Lett. 106, 042301 (2011) [arXiv:1009.3244 [hep-ph]].