#### Research Semester at CERN Progress Report 1

#### Alex Emerman Local Mentor: Lynn Marx 3 October 2013



#### **Current Project**

#### Finishing

- 14 TeV KK W sensitivity studies
  - Effect of pile-up
    - https://indico.cern.ch/getFile.py/access?contribId=4&resId=0&materialId=slides&confId=275341
- <u>Starting</u>
  - Apply Q-jets algorithm to ZZ->llqq search at 8 TeV
    - ZZ->IIqq is a completed search at ATLAS using 7.2 fb<sup>-1</sup> at 8 TeV https://cds.cern.ch/record/1559274?In=en
    - Check significance with/without Q-Jets
      - Is the improvement worth spending more time on?
    - How does telescoping jet compare to Q-jet?
      - Run kt algorithm with multiple R values



# kt jet clustering algorithm

- *kt* jet clustering algorithms try to reverse parton shower
  - $\beta$  determines the  $p_T$  dependence, varies between algorithms
  - Calculate distance parameter between particles
  - Find minimum of the set of  $d_{ij}$  and  $d_{iB}$
  - If d<sub>ij</sub> is min then combine particles and repeat
  - If  $d_{iB}$  is min then it is a final jet, remove from list
    - Continue until no particles remain
- Jet pruning checks each recombination
  - If both conditions are met the softer particle is discarded

• Input: R,  $z_{cut}$ ,  $d_{cut}$   $d_{ij} = \min(p_{Ti}^{\beta}, p_{Tj}^{\beta}) \frac{\Delta R_{ij}^2}{R^2}$   $d_{iB} = p_{Ti}^{\beta}$  $\Delta R_{ii}^2 = (y_i - y_i)^2 + (\phi_i - \phi_i)^2$ 

$$\Delta R_{ij}^{z} = (y_i - y_j)^{z} + (\phi_i - \phi_j)^{z}$$
$$y = \frac{1}{2} \ln \left( \frac{E + p_z c}{E - p_z c} \right)$$

• Pruning cuts  $z_{ij} = \frac{\min(p_{Ti}, p_{Tj})}{|p_{Ti} + p_{Tj}|} < z_{cut}$   $\Delta R_{ij} > d_{cut}$ 



# Q-jet algorithm (1)

- Q-jets algorithm reconstructs multiple possible event histories
- Merges constituents randomly with a weighting factor that reflects the likelihood that they would **be paired** • Weights are:  $\omega_{ij}^{(\alpha)} = \exp\left\{-\alpha \frac{\Delta R_{ij} - d_{\min}}{d_{\min}}\right\}$ 
  - $\Omega_{ij} = \frac{\omega_{ij}}{\Sigma \omega_{ii}}$
  - $\alpha$  is the rigidity, controls sensitivity to RNG
  - Merge pairs according to probability density function
    - Veto if the pair meets the jet pruning conditions on slide 3
  - Continue until all pairs are merged, this is a Q-jet
  - Repeat the algorithm to get a distribution of Q-jets



# Q-jet algorithm (2)

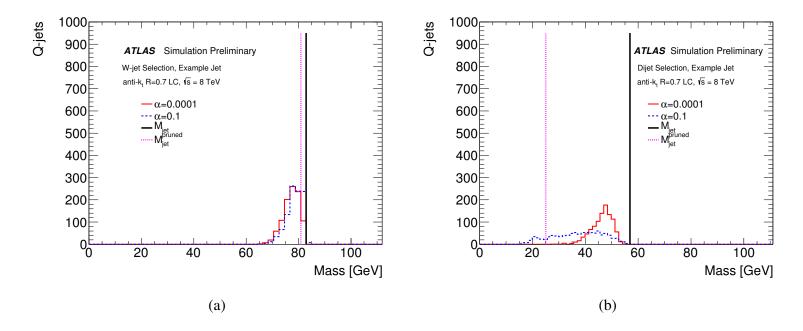



Figure 2: Q-jet mass distribution when generating 1000 Q-jets per jet for (a) a jet from a W boson decay in a  $t\bar{t}$  event and for (b) a jet from a dijet event, reconstructed from topological clusters. The distribution for  $\alpha = 100$  is not shown as it coincides with the pruned jet mass, as expected.

Taken from https://cds.cern.ch/record/1572981/files/ATLAS-CONF-2013-087.pdf



#### **Future Projects**

- Study b-tag efficiency for high p<sub>T</sub> jets containing multiple b quarks
  - Work on specific case of boosted Higgs/Z decay to bb~
    - Study jet substructure for boosted jets
    - Go to weekly jet substructure and b-tagging meetings



