Vzácné semileptonové rozpady Λ_b

```
Pavel Řezníček
ÚČJF, MFF, Karlova Univerzita v Praze
```

```
\frac{Osnova:}{Úvod}
B-fyzika na LHC/ATLASu
Semileptonové rozpady - motivace
Rozpad \Lambda_b \rightarrow \Lambda^0 \mu^+ \mu^-
- Trigger
```

- MC simulace
- Analýza
- Shrnutí

B-produkce na LHC: $\sigma_{total} = 100 \text{ mb}$ $\sigma_{inelastic} = 80 \text{ mb}$ $\sigma_{b\bar{b}} = 500 \mu b$ neurčitost produkce ~ factor 2

ATLAS/CMS univerzální detektory	LHCb specializovaný na B-fyziku		
$ \eta < 2.5, p_T > 10 \text{ GeV}, \sigma = 100 \ \mu b$	$ 1.9 < \eta < 4.9, p_T > 2 \text{ GeV}, \sigma = 230 \ \mu k$	C	
$L_{low} = 1 \div 2 \cdot 10^{33} \text{ cm}^{-2} \text{s}^{-1}$	$L = 2 \cdot 10^{32} \text{ cm}^{-2} \text{s}^{-1}$	—	
$L_{high} = 10^{34} \text{ cm}^{-2} \text{s}^{-1}$	$(L_{max} = 5 \cdot 10^{32} \text{ cm}^{-2} \text{s}^{-1})$		
$B^{0}_{s,d} \rightarrow \mu^{+}\mu^{-}$ triggerovatelné at L_{high}	od 1. fyzikálního runu		
n _{low} ~ 3 n _{high} ~ 23	n ~ 0.5 => nízké pozadí		
f = 32 MHz	f = 30 MHz		
$L_{int} = 10 \text{ fb}^{-1}/\text{year at } L_{low} (3 \text{ years})$) L _{int} = 2 fb ⁻¹ /year (10 fb ⁻¹ after 5 year	'S)	
ATLAS: $\sigma_{Bs \rightarrow \mu\mu} = 80 \text{ MeV}$	$\sigma_{Re} = 18 \text{ MeV}$		
CMS: $\sigma_{Bs \rightarrow \mu\mu} = 46 \text{ MeV}$		ss section	
Vzdálenost 1. detektoru od svazk			
ATLAS~5cm CMS~4cm	$\frac{ LHCb \sim 8 mm}{ LHCb \sim 8 mm} \stackrel{\mathrm{I}}{\simeq} \stackrel{\mathrm{I}}{=} \frac{100 \mathrm{\mu b}}{ LHCb \sim 100 \mathrm{\mu b}} = \frac{100 \mathrm{\mu b}}{ LHCb \sim 100 \mathrm{\mu b}}$	нсь	
f - frekvence křížení svazku (efektivn n - střední počet neelastických pp-inte při jedno křížení svazku L·σ _{inelastic} /f	ní) ¹⁰ terakcí f ₁	0 µb	
01.2008	-2 0 2 eta	4 6 of B-hadron	

31.01.2008

B-fyzikální program ATLASu

- program je zaměřený na hledání effektů non-SM fyziky v oblastech, kde může poskytnout porovnatelné výsledky jako LHCb
 - CP narušení v $B_s \rightarrow J/\psi \phi$ a $B_d \rightarrow J/\psi K_s$ rozpadech
 - Mixing v $B_s \rightarrow D_s^{-}(\phi \pi^-)\pi^+ B_s \rightarrow D_s^{-}(\phi \pi^-)a_1^{+}(\rho \pi^+)$
 - Vzácné semileptonové rozpady:
 - $B_{s,d} \rightarrow \mu\mu$, $B_d \rightarrow K^*\mu\mu$, $B_s \rightarrow \phi\mu\mu$, $B_s \rightarrow \rho\mu\mu$, $\Lambda_b \rightarrow \Lambda\mu\mu$, $B^+ \rightarrow K^+\mu\mu$, $B^+ \rightarrow K^{**}\mu\mu$
 - Přesná měření:
 - vlastnosti B_ hadronů
 - program je výlučne zaměřen na exclusivní kanály, které lze úplně zrekonstruovat

Semileptonové Vzácné Rozpady - Motivace

Kde hledat odchylky od Standardního Modelu ve slabých interakcích ?

- popis pomocí CKM je velmi úspěšný
- jakékoli rozšíření SM zde musí mít pouze malý efekt
- většina měření pochází z:
 - rozpadů s→u, b→c a b→u na stromové úrovni
 - amplitud mixingu: ΔB , $\Delta S = 2$
- ale je málo experimentálních výsledků z FCNC rozpadů typu b \rightarrow s, b \rightarrow d:
 - b \rightarrow sg (např. B $\rightarrow \phi K_s$)
 - b→sγ
 - b→sl⁺l⁻ a b→l⁺l⁻

Rozpady $B \rightarrow X\mu^+\mu^-$

- zakázány na stromové úrovni, v nejnižším řádu 1-smyčkové diagramy
 - malý BR, velká citlivost na případné non-SM částice ve smyčkách
 - BR(B \to X $\mu^+\mu^-$) ~ 10⁻⁶
- obecný popis amplitudy rozpadů b→sl⁺l⁻ a b→sγ pomocí OPE:
- zavedení form-faktorů pro maticové elementy typu:

$$\mathcal{H} = -4 \frac{G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i=1}^{10} C_i(\mu) O_i(\mu)$$

$$\begin{split} &\langle \Lambda \left| \bar{s} \gamma_{\mu} (1 \mp \gamma_{5}) b \right| \Lambda_{b} \rangle , \\ &\langle \Lambda \left| \bar{s} \sigma_{\mu\nu} (1 \mp \gamma_{5}) b \right| \Lambda_{b} \rangle , \\ &\langle \Lambda \left| \bar{s} (1 \mp \gamma_{5}) b \right| \Lambda_{b} \rangle . \end{split}$$

 inclusivní procesy teoreticky lépe popsané (nevystupují zde FF), ale experimentálně obtížně měřitelné

Rozpady $B \rightarrow X\mu^+\mu^-$ (2)

- již změřené BR jsou v souladu s předpovědí pro SM
- předo-zadní asymetrie A_{FB}, parametry asymetrie (polarizace)

Rozpady $B \rightarrow X\mu^+\mu^-$ (2)

- již změřené BR jsou v souladu s předpovědí pro SM
- předo-zadní asymetrie A_{FB}, parametry asymetrie (polarizace)

 $\Lambda_{\rm b} \rightarrow \Lambda^0 \mu^+ \mu^-$

- b→sl⁺l⁻ v baryonovém rozpadu
- ATLAS a CMS zde má výhodu oproti LHCb
 - dopředná geometrie => většina Λ^0 se nestihne rozpadnout v objemu LHCb detektoru)

 výpočty v různých non-SM modelech ukazují až na 5x zvětšení BR oproti SM

- b→sl⁺l⁻ v baryonovém rozpadu
- ATLAS a CMS zde má výhodu oproti LHCb
 - dopředná geometrie => většina Λ⁰ se nestihne rozpadnout v objemu LHCb detektoru)
- kromě A_{FB} umožňuje studovat polarizaci Λ⁰ resp. parametry asymetrie

$$\frac{d\Gamma}{dq^2 \, d\cos\theta_{\Lambda}} \sim 1 + \alpha \alpha_{\Lambda} \cos\theta_{\Lambda}$$

- $\theta_{\Lambda}^{}$ polarní úhel protonu v klidovém systému Λ^{0}
- je nutné vzít v úvahu polarizaci Λ (měřena pomocí rozpadu Λ_b→J/ψ

ATLAS di-muon trigger

- 3-stupňový trigger:
- LVL1
 - 2 miony (p_{Tµ1} > 6 GeV, p_{Tµ2} > 4 GeV)
 detekované rychlými minovými
 detektory (TGC, RPC)

· LVL2

- potvrzení přesnými mionovými detektory MDT a calorimetry, extrapolace do vnitřního detektoru
- ROIs, fitování sekundárních vertexů, základní selekce (inv. hmota μμ, ...)

• Event Filter

 rekonstrukce jednotlivých exclusivních kanálů

- detekce $p_{\tau} > 3-4$ GeV
- účinnost 1-mionového LVL1
 triggeru ~ 75%
- účinnost 2-mionového LVL1
 triggeru ~ 60%
 - pokles o 10% pro vzájemný úhel $\Delta\eta$ < 0.1 $\Delta\phi$ < 0.1
- potlačení falešných 2-mionových triggerů z překrývajících se detektorů

MC Simulace

- použití Pythia + EvtGen (amplituda rozpadu Λ_b) v ATLAS SW prostředí Athena generator → simulace → digitizace → rekonstrukce → analýza
- počet detekovatelných $\Lambda_b \rightarrow \Lambda^0_{\rightarrow p\pi} \mu^+ \mu^-$ rozpadů při L_{int} = 30 fb⁻¹:

$\Lambda_{ extsf{b}}$ produkce	$\sigma_{b\bar{b}} \times Br_{b\to\Lambda b} = 50 \ \mu b$	1.5×10^{12}
větvící poměr rozpadu	$BR_{\Lambda \flat \to \Lambda \mu \mu} = 2 \cdot 10^{-6}, \ BR_{\Lambda \to p \pi} = 0.64$	1.800.000
~ 2-mionový LVL1 trigger	p⊤ > 6 / 4 GeV , η < 2.5	52.000
akceptance vniřního detektoru	pτ > 0.5 GeV, η < 2.5	28.000

• Dopad triggeru a akceptance vnitřního detektoru na A_{FB} a $M(\mu^+\mu^-)$ spektrum

- 2-mionový vertex:
 - vertex $\chi^2/ND_0F < 3$
 - $q_{\min} < M_{\mu+\mu-} < q_{\max}$
 - vyloučení $M_{\mu+\mu-}$ 120 MeV okolo hmot J/ψ a ψ'
- Λ^0 vertex:
 - vertex $\chi^2/ND_0F < 3$
 - $M = M_{\Lambda 0} \pm 6 MeV$
 - $p(p) > p(\pi)$
 - $-1 \text{ cm} < \text{R}_{\Lambda 0} < 45 \text{ cm}$
 - $p_{TAO} > 4 \text{ GeV}$
- Λ_{b} vertex:
 - vertex $\chi^2/ND_0F < 2$
 - $M = M_{Ab} \pm 100 \text{ MeV}$
 - $\tau_{\Lambda b}$ > 0.5 ps (R_{Λb} ~ 750 μm) - θ_{pr} < 2.3°

předpokládaný výsledek při L_{int} = 30fb⁻¹: 800 rekonstruovaných případů

- MC simulace a analýza 150.000
 bb→µ_{pT>4GeV}µ_{pT>4GeV}X vede
 hornímu limitu na pozadí: 4000 ev.
 - převládá v oblasti nízkých q²

- experimentální body odpovídají průměrné A_{FB} v daném intervalu a statistické chybě (dominantní)
- statistika nebude dostačující
 k měření bodu A_{FB} = 0

Shrnutí

ATLAS bude měřit b→sl⁺l⁻ v těchto rozpadech:

		Signál	Pozadí	$(L_{int} = 30 f b^{-1})$
_	$B^{0}{}_{d} \rightarrow K^{0^{\star}} \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -}$	2500	< 3000	
_	${B^{\text{O}}}_{\text{s}} \rightarrow \phi \; \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -}$	900	< 3000	
_	${B^{\text{O}}}_{\text{d}} \rightarrow \rho \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -}$	300	< 1000	
_	$B^{\scriptscriptstyle +} \to K^{\scriptscriptstyle +} \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -}$	1500	< 4000	(SM: nulová A _{FB} v celém spektru q²)
_	$B^{\scriptscriptstyle +} \to K^{\scriptscriptstyle \star \star} \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -}$	900	< 4000	
_	$\Lambda_{\rm b} \to \Lambda^0 \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -}$	800	< 4000	0.6

- experimenty na urychlovači LHC poskytnou dostatečně přesné měření k vyloučení některých modelů (např. s C₇^{eff} > 0) již během fáze nízké luminosity 10³³ cm⁻²s⁻¹
 - dominovat budou především LHCb
 měření rozpadů B→K*μ⁺μ⁻ (~4500/rok)
 umožňující měření bodu A_{FB} = 0

ATLAS Experiment

- univerzální detektor urychlovače
 Large Hadron Collider:
 - E_{cms} = 7+7 TeV
 - $L_{\text{nominální}} = 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
 - frekvence p+p srážek 40 MHz
- přepokládaný datum spuštění: léto 2008
- fyzikální program:
 - Higgs, SUSY, Exotics, ...
 - B-fyzika, top-fyzika,
 Standardní model

B-fyzikální program ATLASu (2)

- prověření vlastností detektoru v první fázy spuštění LHC
 - kalibrace triggerového systému, trackingu a mionových systémů
 - měření invariantní hmoty a dob života dobře známých B-hadronů
- v 1% srážek dojde k vytvoření bb páru => frekvence 20 kHz v akceptancy detektoru ATLAS (při L = 10³³ cm⁻²s⁻¹), ale pouze 100 Hz se bude ukládat pro celý ATLAS, z toho 10 Hz má rezervována Bfyzika
 - nelze ukládat všechny měřitelné bb případy, ale je třeba vybrat pouze ty nejzajímavější
 - je třeba velmi selektivní trigger
 - založený na detekci di-mionu, single-mionu, nebo mionu + clusteru v kalorimetru

 $B \rightarrow \mu^{\dagger} \mu^{-}$

- BR_{sm} ~ 10⁻⁹, může být výrazně jiné v non-SM modelech
- výpočet zatížen malými teoretickými chybami

 $BR(B^{0}_{s} \rightarrow \mu^{+}\mu^{-}) = (3.42 \pm 0.52) \cdot 10^{-9}$

- $\mathsf{BR}(\mathsf{B}^{0}_{d} \rightarrow \mu^{+} \mu^{-}) = (1.00 \pm 0.14) \cdot 10^{-10}$
- současné experimenty umožňují úrčit horní limit (CDF+D0): BR(B^o_s→µ⁺µ⁻) ~ 10⁻⁷, předpokládané vylepšení v budoucnu ~ 5-8x

exp. limit B_s

- LHC: při nominální L = 10³⁴ cm⁻²s⁻¹ umožní změřit BR i menší než SM
- při odhadu pozadí je nutné brát v úvahu i velmi vzácné rozpady (obvykle chybějící v MC generátorech) a mis-identifikaci hadronů za miony: B⁰_{d,s} → π⁺π⁻, B⁰_{d,s} → K⁻π⁺, ..., B^{0±} → π^{0±}μ⁺μ⁻, B⁺ → μ⁺μ⁻l⁺v_µ, ...

Event Generator

- using **EvtGen** for $\Lambda^0_{\ b}$ and consequent Λ^0 decay
 - decay model can be defined either by amplitude or probability
 - need to know maximum probability (simple scanning whole phase space)
 - can simply introduce $\Lambda^{\rm 0}_{\ \rm b}$ polarization, model parameters at job-options level
 - EvtGen algorithm to avoid inefficient accept-reject algorithm and difficulty to find maximum probability in case of long or complicated decay chain:

- created 3 new EvtGen classes:
 - <u>EvtLb2LII</u> $\Lambda^{0}_{b} \rightarrow \Lambda^{0} \mu^{+} \mu^{-}$ decay amplitude ([T.M. Aliev et al.,...])
 - can chose physics model, FF model (HQET by default), include LD effects
 - <u>EvtWilsonCoeficients</u> W.C. for SM ([A.J.Buras et al.,...])
 - <u>EvtHypNonLepton</u> $\Lambda^0 \rightarrow p\pi$ decay amplitude ([Review of Particle Physics])

Event Generator (2)

- EvtGen reads output from PythiaB (pythia 6.205 tuned to b-physics)
 - forced hadronization to $\Lambda^0_{\ b}$ (to speed up generation thanks to Cladio Ferreti)
 - $\Lambda^0_{\ b}$ is left to be decayed in EvtGen

- non SM physics effects on A_{FB} and di-lepton mass spectrum:
 - 100k events generated by EvtGen model in agreement with theoretical papers

Signal Reconstruction

- using $\underline{xKalman}$ and $\underline{iPatRec}$ reconstruction algorithm with modified parameters optimized to V^{o} finding
 - minimum PT lowered to 0.5 GeV/c (inner detector limit due to magnetic field)
 - <u>xKalman</u>: minimum number of precision (Si) hits lowered from 7 to 6 hits (3 SCT layers)
 - iPatRec: maximum impact parameter of tracks increased from 40 to 100 mm
- using <u>xKalman</u> reconstruction strategy optimal for initial layout

