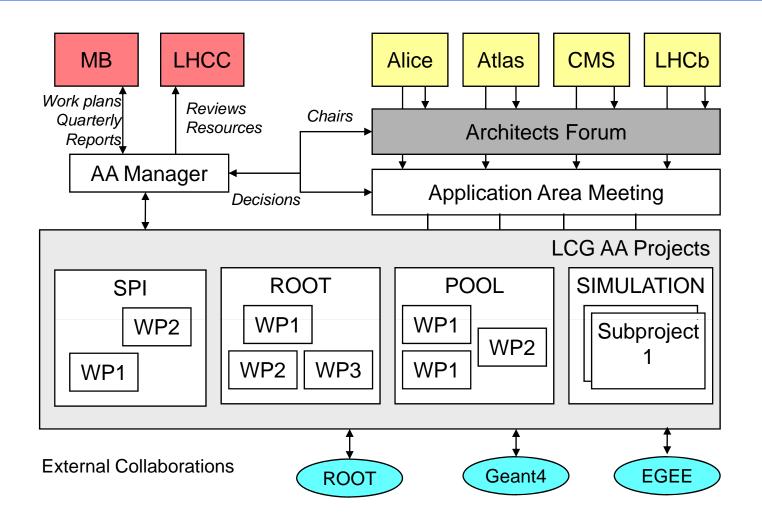
Applications Area Status

LCG Mini-Review 1st July 2008


Pere Mato/CERN

Outline

- Applications Area Overview
- Current project status
- Manpower
- PH R&D Projects
- Summary

Applications Area Organization

AA Projects

- SPI Software process infrastructure (S. Roiser)
 - Software and development services: external libraries, savannah, software distribution, support for builds, tests, QA, etc.
- ◆ ROOT Core Libraries and Services (R. Brun)
 - Foundation class libraries, math libraries, framework services, dictionaries, scripting, GUI, graphics, SEAL libraries, etc.
- POOL Persistency Framework (D. Duellmann)
 - Storage manager, file catalogs, event collections, relational access layer, conditions database, etc.
- ◆ SIMU Simulation project (G. Cosmo)
 - Simulation framework, physics validation studies, MC event generators, participation in Geant4, Fluka.

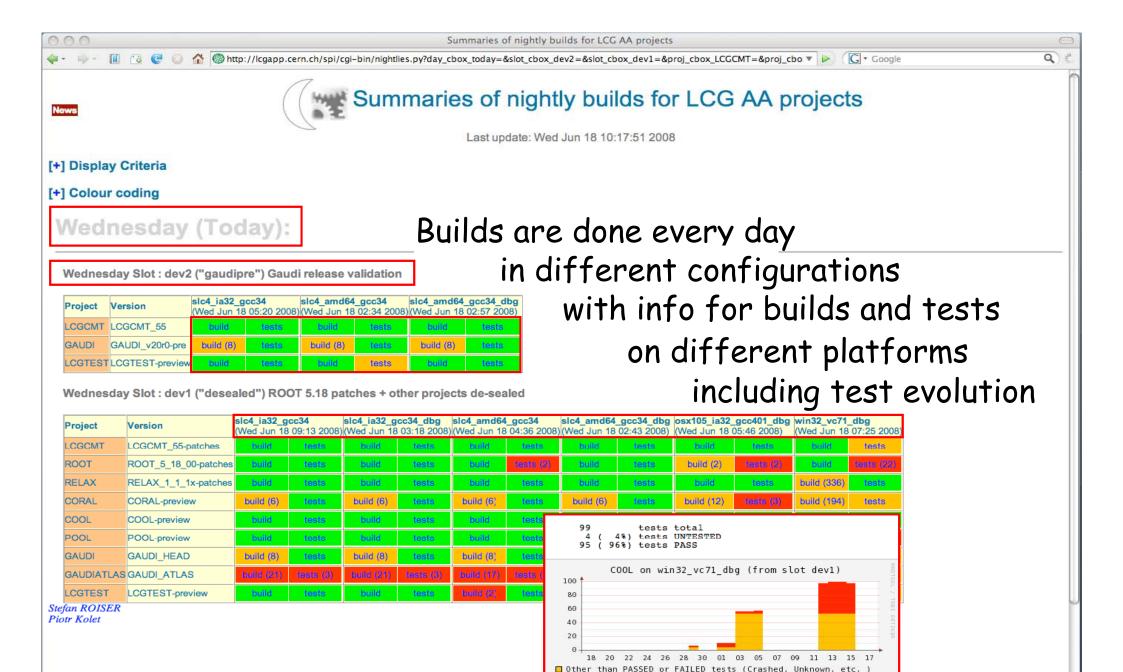
Unchanged Execution Approach

- Architects Forum (AF) meetings
 - Decision and action taking meetings
 - » Experiments participate directly in the planning, management, and architectural and technical direction of AA activities
 - Every two weeks, public minutes after internal circulation
 - » http://lcgapp.cern.ch/project/mgmt/af.html
- Application Area meetings
 - Informal forum of exchange of information between the AA projects and experiments, etc.
 - Lower frequency than before
- Workplans, quarterly reports and reviews
 - Discussed and agreed in the AF

AA General Highlights

Configurations in use by experiments

- Several new configurations (coherent releases of complete software stack including external packages) has been made available in last 6 months
 - » LCG_53, LCG_54, LCG_55
 - » Content details and schedule discussed in AF
- Stability of basic functionality together with fast turn around for fixes is the common requirement from experiments
- SEAL migration (de-sealed)
 - Finally the CORAL/POOL project have removed dependencies to SEAL. The SEAL migration is now 100%.
 - LCG_55 configuration has been released and is being integrated in LHCb (ATLAS and CMS will do it later)


Software Process & Infrastructure

- Communication services (Hypernews, Savannah)
 - Heavily used by LHC experiments, LCG/AA, Grid, IT, ...
 - Mainly user support
 - Adaptation in Savannah for Atlas (for LHC startup)
- Whole software stack successfully ported
 - New compilers (gcc 4.1) as preview for slc5
 - New platforms (Mac OSX Leopard 32 bit)
- Operational tasks successfully handled
 - Manpower situation will improve again in August with new fellow joining

SPI Nightly Builds

- Used for early verification of code changes, new compilers/platforms and changes in "external" libraries
 - » by LCG Application Area development teams
 - » ... and LHC experiments for their integration testing
- Allows faster release builds
 - Usually a complete release is done in ~ 1 day (before in the order of days/weeks)
- The nightly build system itself is also used by other parties for their software builds (LHCb, G4)
- Future developments
 - Speedup by exploiting the full potential of multi-core build servers
 - Distributed builds over several build nodes
 - Configuration via web service

FAILED tests

ROOT Highlights

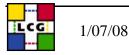
- The version of ROOT 5.18 was released on January 15
 - Several patches have been made available quickly after detection of problems by experiments
 - This is the baseline version used by the LHC experiments
- ◆ Latest production release 5.20 released last week
 - It includes a long list of new features and improvements
 - » Re-structuring of the source repository reflecting better the structure of the project in terms of work packages and to easy the maintenance of the release notes and other documentation
 - » first release of CINT based on Reflex made available for testing
 - » Improvements in speed in many areas, size of dictionaries, etc.
 - Probably most of the LHC experiments will skip this version and wait for the December release

ROOT Extended Schema Evolution

- ROOT I/O needed to support more complex changes in experiments "event models"
 - Be able to read event data in old format into new format also when stored 'column-wise'
 - The existing capabilities were largely insufficient
 - Obviously it requires user-provided transformation codes
- The specification of the extended schema evolution functionality has been defined and agreed by experiments
 - Specs document, presentation in AA meeting and AF discussion
 - An initial implementation is expected by end of August
 - Production quality release by the end of the year after having been validated by the experiments

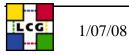
PROOF

- New functionality driven mainly by the requirements of the ALICE CAF
 - Support for 'Datasets' to simplify data management
 - Package management
 - Better message logging of the sessions
- Currently working on
 - Integration with Condor for scheduling and resource management
 - PROOF-Lite for multi-core machines
 - Improving error handling and recovery


Persistency Framework

Three deliverables:

- POOL: Framework for the persistency of arbitrary C++ objects and relationships, with file-based (ROOT) or RDBMS back-ends
- CORAL: General, technology independent interface to Relational Database
- COOL: Framework for the handling of detector condition data associated with a time validity
- A "de-sealed" version of the persistency framework has been released
 - AA milestone achieved
 - Maintaining bug-fixes for the SEAL based version for some months
- Replacement manpower in POOL and CORAL fully effective


Status of POOL

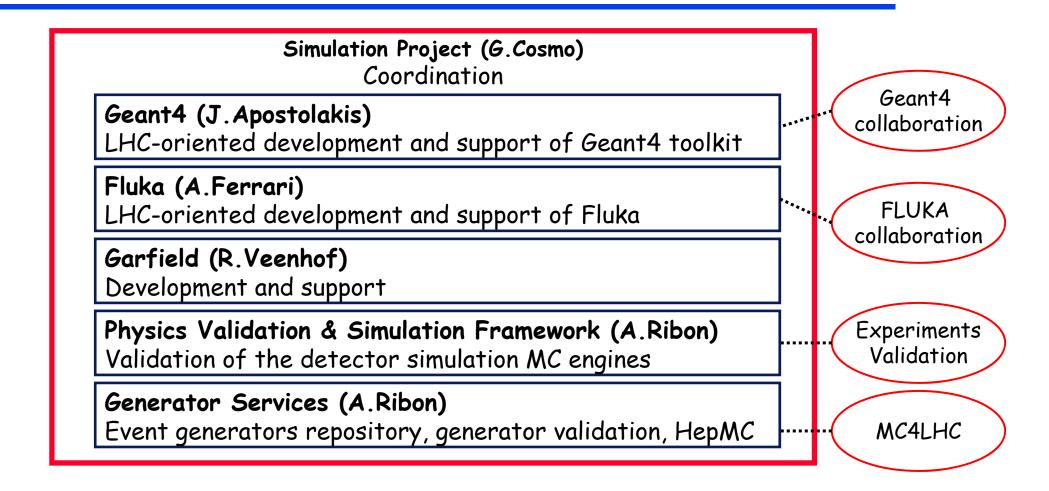
- POOL code is production quality and ready for LHC data
 - relational and ROOT based persistency storage with file catalogs
 - no further development planned (and no man-power available)
- Performed review of POOL usage by the LHC experiments
 - none of the experiments exploiting the main motivation for POOL of having common interface to different storage technologies
 - » ATLAS and LHCb using RootStorageSvc
 - » CMS using RelationStorageSvc
 - none of the experiments using the full stack of POOL modules
 - » different parts of POOL functionality now provided by the experiments frameworks

What is used by whom

	A	Atlas		CMS	LHCb		
	event data	condition data	event data	condition data	event data	condition data	
DataSvc	土			X			
PersistencySvc	x	X		X			
StorageSvc	x	X		X	X		
RootStorageSvc	x	X			X		
RelationalStorageSvc				X			
ImplicitCollation	x			X			
RootCollection	x						
RelationalCollection	x						
XMLCatalog	x	X					
LFCCatalog	~						
RelationalCatalog	~						
PyFileCatalog							

Conclusion for POOL

- POOL has provided solutions to a number of persistencyrelated issues
 - Some of these solutions has been incorporated to other projects (e.g. ROOT, Gaudi)
 - Original motivation of common interface to different persistency technologies turned out not to be relevant
- Plans for the future
 - short term (next months)
 - » minor clean up of the code (new CVS set up)
 - » updates for new versions of ROOT
 - medium term (over the next year)
 - » study of possible common approach to persistency (ROOT based) by ATLAS and LHCb (integrated in Gaudi/Athena)


CORAL

- Undertaken a review of outstanding bugs many smaller items fixed/closed
- Started a CORAL server prototype
 - Requested by the ATLAS online community
 - A way to cope with some technical issues such as number of the database connections
- CORAL server prototype is build together with production components since CORAL 2.0.0
 - simple read-only tests pass, full read-only test suite (including COOL) are expected to pass by the end of the next week
 - First read-write production release of CORAL server planned for end of October

COOL

- Performance optimization for most IOV retrieval use cases is complete
 - For each use case, performance is now routinely tested in a variety of scenarios which have given problems in the past
 - Work is ongoing to simplify the code so that all use cases share a few well defined methods defining the optimized SQL strategies with good and stable performance
- A few functional enhancements have been provided as requested by the experiments (for the management of channel metadata and tags)
- Basic support for the CORAL server has been added and COOL tests defined

Simulation Project Structure and tasks

Geant4 - Highlights of 2008 (1) Release 9.1

- New physics models
 - First alpha-version of Liege intra-nuclear cascade
 - Native QMD low-energy nucleus-nucleus model
 - Re-scattering interface to Binary cascade
 - » Potential re-interaction inside nucleus of the product of a high-energy interaction
 - New physics-list options for analysis of test-beam data
 - » Inclusion of diffraction model for the description of shower shapes
- ◆ Better in CPU performance in hadronic physics (5-10 %)
- Improvements in electromagnetic physics
 - Improved straggling for ions at low energies
 - Revised high-energy gamma tail for muon Bremmstrahlung (NA49)
- New GDML plug-in for importing detector description setups
- New command-based scoring capabilities
- New optimised navigation technique for regular patterned geometries

Geant4 - Highlights of 2008 (2) Interaction with experiments & feedback

- Patches to existing releases (8.3, 9.0, 9.1)
 - Improvements in event reproducibility and overall robustness
 - Fixes for problems reported by experiments in pre-production runs
 - » Fixes to quasi-elastic scattering following reports by HARP-CDP and NA61
 - » Inclusion of very short-live particles tracking (CMS)
- Assessment of experiments' needs for releases to be used in production
 - Convergence on adoption and support for the most recent releases
- New developments (9.2-β release in July 2008)
 - Improvements to Fritiof hadronic model for pion incident interactions
 - New alternative multiple-scattering model (optimal handling of large/small angles)
 - First implementation of GDML writer, completing support for GDML persistency
- Geant4 paper (NIM <u>A 506 (2003) 250-303</u>) designated as a "Current Classic" (Thomson Scientific's Essential Science Indicators)
 - http://sciencewatch.com/dr/cc/08-juncc/

LCG Generator Services

GENSER

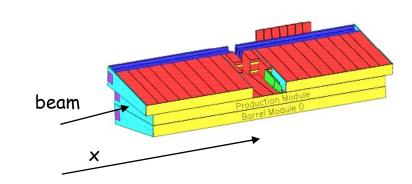
- Structure stable and used by experiments
- 24 generators installed (most with different versions)
- More generators built also on Windows (for LHCb)
- Extended set of tests
- Evaluation of autotools for building all generators

◆ HepMC

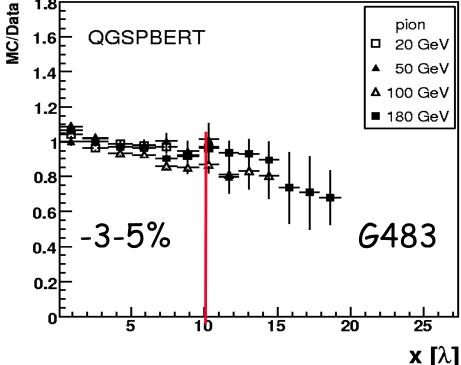
- New release process, more openly discussed and agreed
 - » HepMC 2.04.00 released on 12 June
 - Units are now mandatory: GEV or MEV; MM or CM

MCDB

- Automatic uploading and downloading of samples
- Integrated in the CMS software framework
- To be tested in large, Grid-based productions

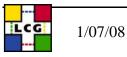

LCG Physics Validation

- Extension to Fluka of the ATLAS TileCal 2002 test-beam analysis has been concluded. Reasonably good agreement of Fluka and Geant4 QGSP_BERT with data.
- Including instrumental effects:
 - Readout time window
 - Birks quenching effects
- Show better agreement with data and consistency between different types of calorimeters.
- Main focus now on energy response and resolution
 - Non-smooth transitions between hadronic models
 - Try to reduce the use of parametrized models in theory-driven Physics Lists
- Most interesting Physics Lists: QGSP_BERT, FTF_BIC.

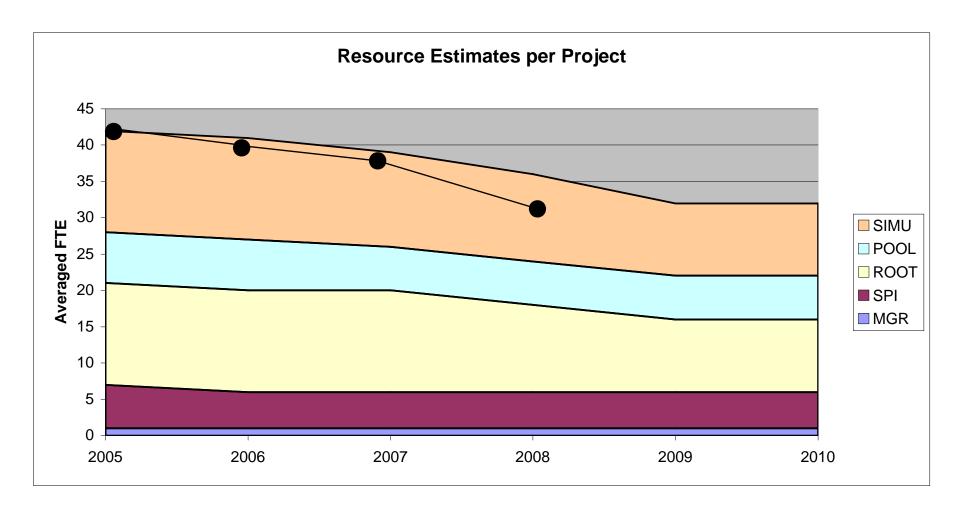

Hadronic Shower Shapes in Geant4

◆ Starting with version 8.3, the proper modeling of quasielastic and the inclusion of Bertini cascade model have improved significantly the description of hadronic shower shapes for pions.

 QGSP_BERT is now the default Physics List in ATLAS.



T. Carli, M. Simonyan, October 2007



Manpower Table

Sum of FT	E(2008)	Afiliation											
Project	Sub-Project	ALICE	ATLAS	BNL	CERN	CMS	EGEE	FNAL	LCG- Russia	LCG-Spain	ТНСР	Other	LCG-Italy Grand Total
MGR	(blank)				0.9								0.9
MGR Total	,				0.9								0.9
POOL	Catalog Collections		0 0.2								0.0		0.2
	Cool StorageMgr Coral		0.2		0.8 0.9 1.8	0.1					0.2		1 1.1 1.9
POOL Total			0.4		3.5	0.1					0.2		4.2 1.3
ROOT	Base Dictionary Geom	0.2	0.1		1.2 1.6			0.1 0.2					1.3 1.9 0.2
	Graf Gui I/O	0.6		0.1	1 0.9			0.7				0.2	1.8 1 0.7
	Math Mgr Proof Seal				1.9 1 2.1 0.1			0.7					1.9 1 2.1
ROOT Total		0.8	0.1	0.1	9.8			1				0.2	0.1
SIMU	Framework Garfield	0.0	0.1	0.1	0.5							0.2	12 0.5
	Geant4 Genser Mgr Validation				7.95 0.5 0.25 0.4	0		0.1	1.9				7.95 2.5 0.25 0.4
SIMU Total					9.6	0		0.1	1.9				11.6
SPI	(blank)				2.8								2.8
SPI Total	<u> </u>				2.8								2.8 31.5
Grand Total		0.8	0.5	0.1	26.6	0.1		1.1	1.9		0.2	0.2	31.5

Estimated Resource Needs

Staffing Remarks

- Big reduction as (more or less) expected in 2008 and 2009
 - No full replacement of LD contracts
 - » In PH: from 3 LD -> 0 IC + LD extensions
 - » In IT: from 4 LD -> 1 IC + 2 LD
 - Retirement
- Some activities are very much affected
 - Several milestones in Physics Validation on hold
 - Geant4 testing also affected
 - Rationalization of deliverables of Persistency Framework
 - PROOF development is also at big risk

PH - R&D Projects

- WP8 Parallelization of Software Frameworks to exploit Multi-core Processors
 - Investigate current and future multi-core architectures
 - Measure and analyze performance of current LHC physics application software on multi-core architectures
 - Investigate solutions to parallelize current LHC physics software at application framework level and also investigate solutions to parallelize algorithms
- WP9 Portable Analysis Environment using Virtualization Technology
 - Evaluation of the available virtualization technologies (virtual appliances)
 - Deployment of a read-only distributed file system with aggressive caching schema
 - Collect requirements from experiments and confront them with available technologies
 - Development of the "CernVM" prototype

PH - R&D Projects

- Both projects are hosted in PH-SFT with participation of LHC experiments
- Kickoff workshop took place in April with good participation from the LHC experiments and technology vendors
 - http://indico.cern.ch/conferenceDisplay.py?confId=28823
- Regular monitoring and control by the LHC experiments via the Architect's Forum (AF)
- Consultation and collaboration with IT department to ensure integration with IT services
 - Privileged relations with OpenLab

Summary

- Applications Area has continued to provide the software and services required by the experiments
 - The organization is mature and works reasonable well
 - Software functionality sufficient for first data-taking year
- Improved testing and integration of the complete software stack and introduced new release procedures
 - Software releases can be done very quickly on demand
 - Ready for LHC turn on
- Reduction of manpower is affecting seriously some of the projects
- Started the two new R&D work packages and put them under the existing control and monitor structure

