

Nb-Ti Wiggler design progress and experimental plan at ANKA

Steffen Hillenbrand, For the KIT-CLIC collaboration

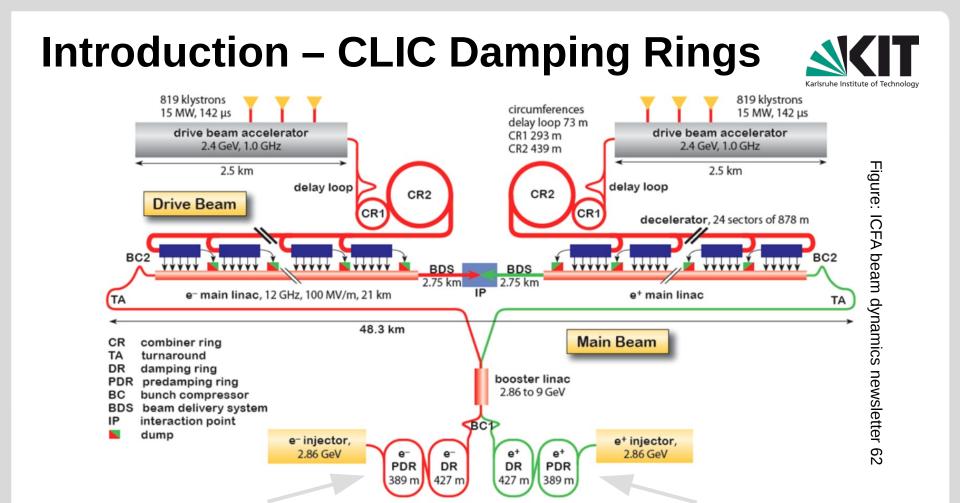
KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Introduction: CLIC Damping Rings (DR) and ANKA light source

- The superconducting Nb-Ti Damping Wiggler (DW)
 - Demonstration of novel concepts
 - Technical choices
- Planned Experiments
- Project Status and Outlook

Introduction: CLIC Damping Rings (DR) and ANKA light source

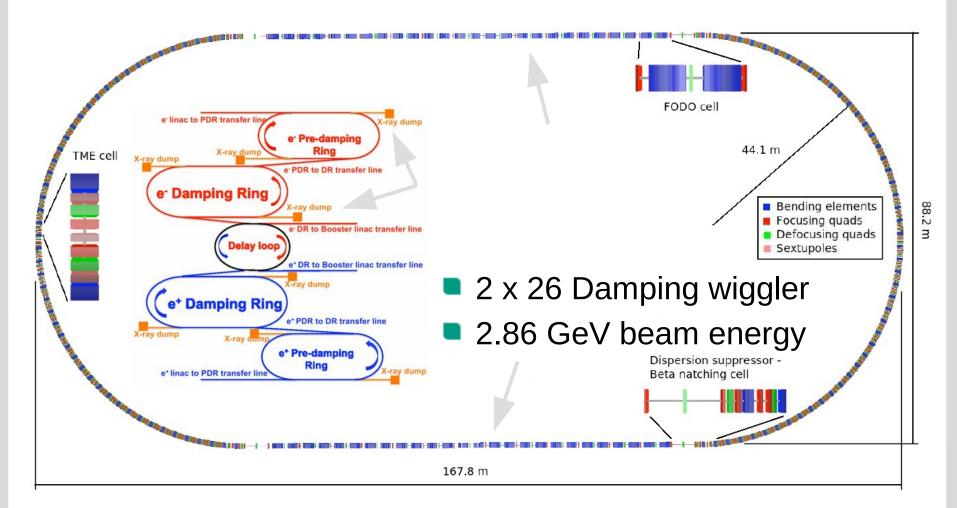

The superconducting Nb-Ti Damping Wiggler (DW)
 Demonstration of novel concepts

Technical choices

Planned Experiments

Project Status and Outlook

3 Nb-Ti DW, status and experimental plan at ANKA

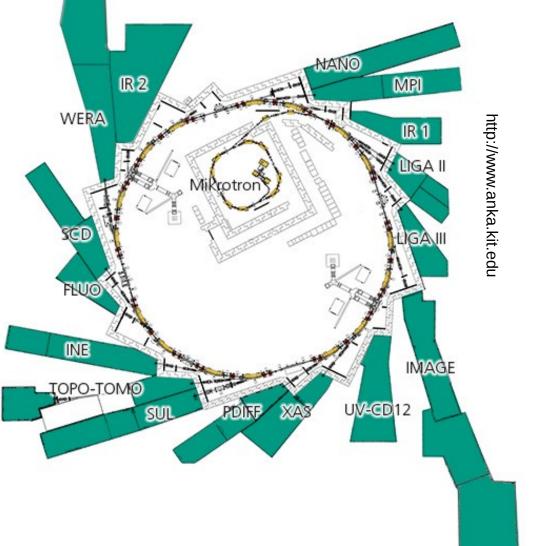

Very small beam size needed for high luminosity, thefore
 Damping rings (DR) needed to reach emittance requirement.

4 Nb-Ti DW, status and experimental plan at ANKA

S. Hillenbrand, for the KIT-CERN collaboration

Introduction – CLIC Damping Rings

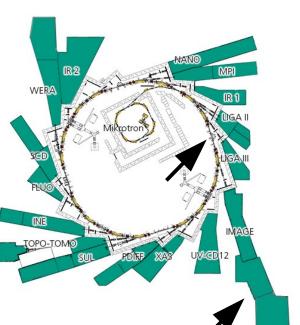
Cf. ICFA beam dynamics newsletter 62


5 Nb-Ti DW, status and experimental plan at ANKA

S. Hillenbrand, for the KIT-CERN collaboration

Introduction – ANKA Synchrotron

- 3rd generation Synchrotron light source at KIT Karlsruhe.
- User facility.
- 2.5 GeV beam energy in normal operation.



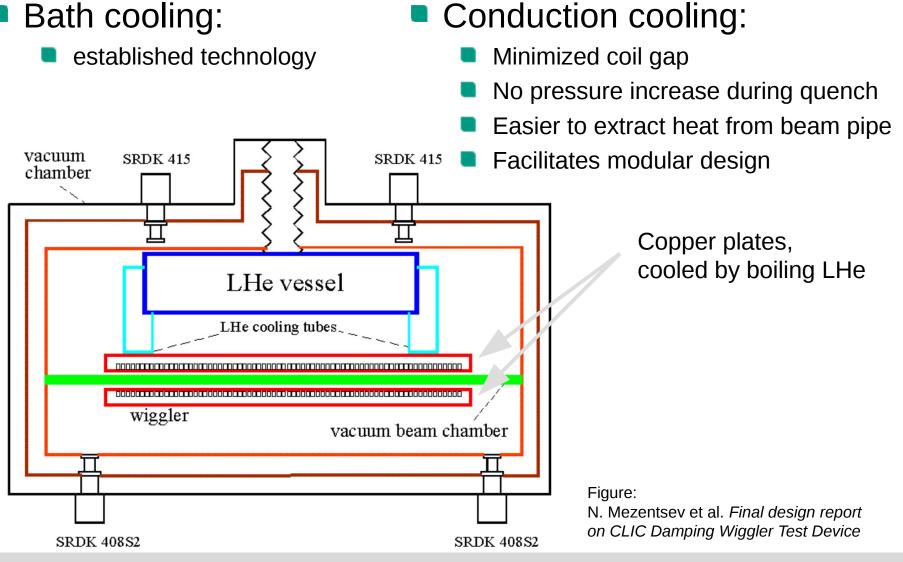
6 Nb-Ti DW, status and experimental plan at ANKA

Introduction - Collaboration

- Set of wiggler parameters interesting for both CLIC DW and as light source has been found.
- Wiggler developed and produced by BINP (Budker Institute of Nuclear Physics).

- Installation at IMAGE beamline foreseen for July 2014:
 - Long-term reliability test for CLIC DW,
 - Light source for ANKA.

7 Nb-Ti DW, status and experimental plan at ANKA



- Introduction: CLIC Damping Rings (DR) and ANKA light source
- The superconducting Nb-Ti Damping Wiggler (DW)
 Demonstration of novel concepts
 - Technical choices
- Planned Experiments
- Project Status and Outlook

- 8 Nb-Ti DW, status and experimental plan at ANKA
- S. Hillenbrand, for the KIT-CERN collaboration
 - CLIC workshop, February 6Th 2014

Conduction Cooling I / II

Nb-Ti DW, status and experimental plan at ANKA

9

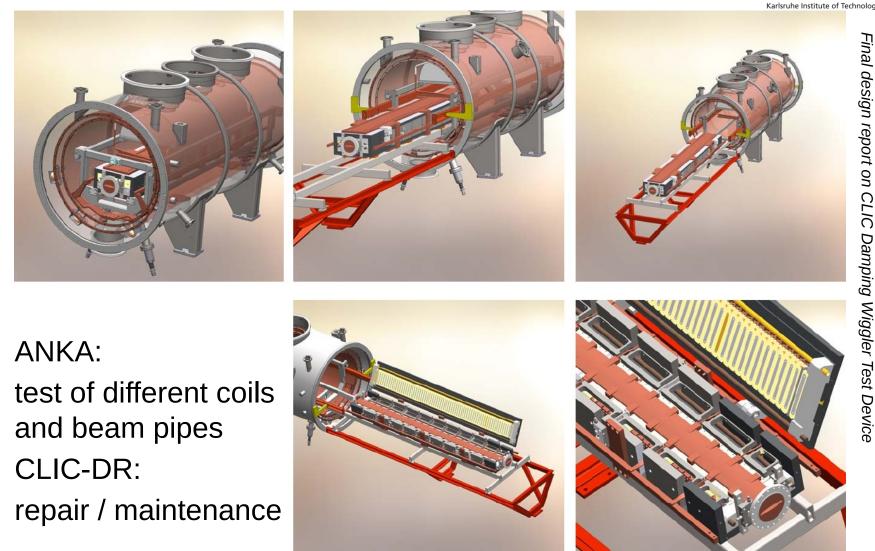
S. Hillenbrand, for the KIT-CERN collaboration

Conduction Cooling II / II

Top coils cooled via thermosiphons at the ends.
 Bottom coils connected to top via copper links.

Figures:N. Mezentsev et al. Final design report on CLIC Damping Wiggler Test Device

10 Nb-Ti DW, status and experimental plan at ANKA


S. Hillenbrand, for the KIT-CERN collaboration

Modular Design – Easy Access

Figures:N. Mezentsev

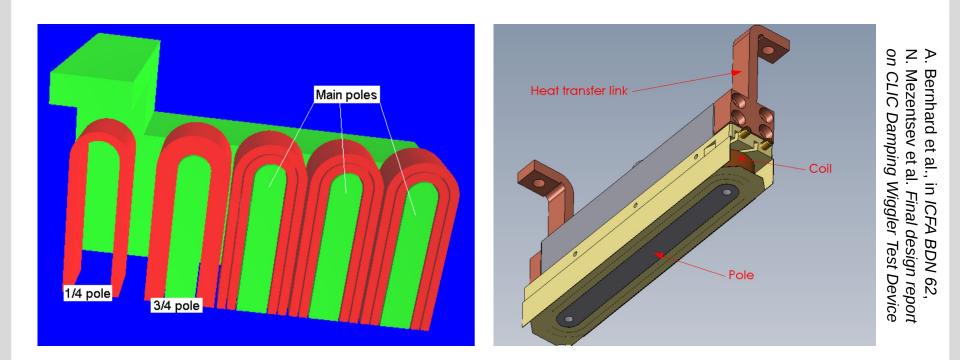
et al

- 11 Nb-Ti DW, status and experimental plan at ANKA
- S. Hillenbrand, for the KIT-CERN collaboration CLIC workshop, February 6Th 2014

- Introduction: CLIC Damping Rings (DR) and ANKA light source
- The superconducting Nb-Ti Damping Wiggler (DW)
 - Demonstration of novel concepts
 - Technical choices
- Planned Experiments
- Project Status and Outlook

12 Nb-Ti DW, status and experimental plan at ANKA

S. Hillenbrand, for the KIT-CERN collaboration


Nb-Ti vs. Nb₃Sn

- Nb₃Sn technology offers larger parameter range than Nb-Ti, but is technically more challenging.
- Nb-Ti as more mature technology chosen for first full-scale prototype.
- Nb₃Sn R&D performed in parallel at CERN.
- See following talk by Laura GARCIA FAJARDO Nb₃Sn wiggler design, test and plans.

Hor. vs. Vert. Coil Geometry

Horizontal Racetrack geometry chosen

- More efficient design wrt. vertical winding, but
- Coils connected by splices, higher forces on end coils.

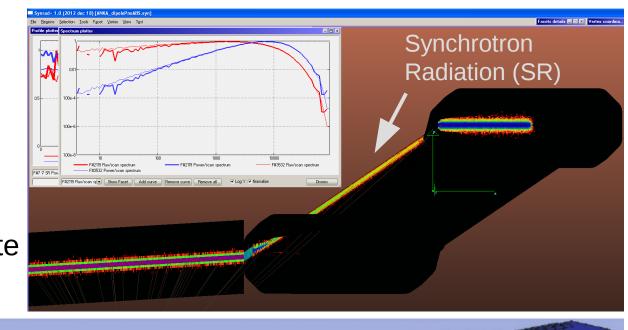
14 Nb-Ti DW, status and experimental plan at ANKA

- Introduction: CLIC Damping Rings (DR) and ANKA light source
- The superconducting Nb-Ti Damping Wiggler (DW)
 Demonstration of novel concepts
 Technical choices
 - Planned Experiments
- Project Status and Outlook

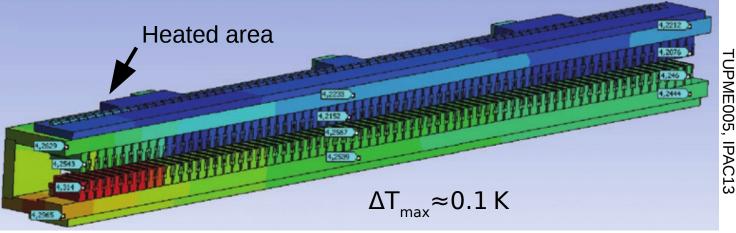
15 Nb-Ti DW, status and experimental plan at ANKA

S. Hillenbrand, for the KIT-CERN collaboration

Early Experiments

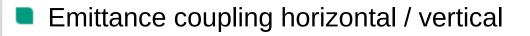

- Influence on beam:
 - Tune shift, orbit changes,
 - Change in vacuum pressure / Beam lifetime,
 - Map higher order multipole-field via orbit variation.
- Confirmation of cooling concept:
 - Synchrotron Radiation (SR) in different modes of operation,
 - Added heaters.

Early Experiments - Cooling


Top: SR on side of chamber

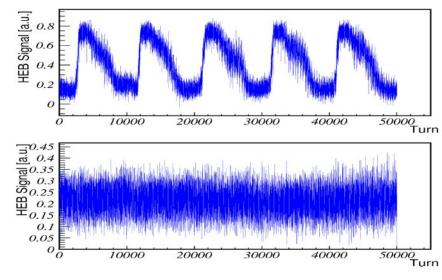
Bottom: Heaters to simulate DR load

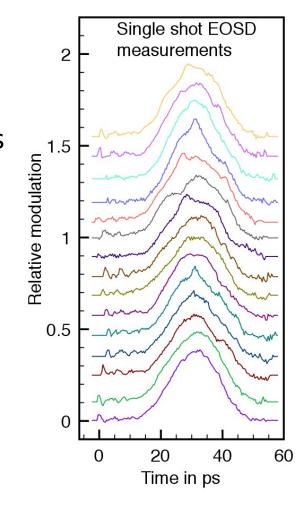
≥


Bernhard et al.,

17 Nb-Ti DW, status and experimental plan at ANKA

Advanced Experiments





Low- α_c at 1.3 GeV– short bunch lengths:

- Bunch structure, CSR bursting patterns
- Multibunch effects

See presentation Experiments with short bunches at ANKA at 17:00.

Figures:

V. Judin et al., Observation of Bursting Behavior Using Multiturn Measurements at ANKA, IPAC10 N. Hiller et al., Electro-Optical Bunch Length Measurements at the ANKA Storage Ring, IPAC13

18 Nb-Ti DW, status and experimental plan at ANKA

S. Hillenbrand, for the KIT-CERN collaboration

- Introduction: CLIC Damping Rings (DR) and ANKA light source
- The superconducting Nb-Ti Damping Wiggler (DW)
 Demonstration of novel concepts
 Technical choices
- Planned Experiments
- Project Status and Outlook

CLIC workshop, February 6Th 2014

Timeline

Production of wiggler is almost finished

- March 2014: Wiggler bath test
- April 2014: Factory acceptance test
- July 2014: Installation at ANKA, commissioning
- September 2014: Start of experimental program
- 2015: Decision on Nb₃Sn option

20 Nb-Ti DW, status and experimental plan at ANKA

Summary

Production of a superconducting Nb-Ti wiggler with

- conduction cooling,
- modular design
- at BINP is almost finished.
- It will serve both as
 - light source at ANKA,
 - Iong-term test of damping wiggler prototype.
- Installation at ANKA is foreseen for summer 2014.

Thank you for your attention!

22 Nb-Ti DW, status and experimental plan at ANKA

S. Hillenbrand, for the KIT-CERN collaboration

Acknowledgment

BINP:

Alexey Bragin, Nikolay Mezentsev, Vasily Syrovatin, Konstatin Zolotarev

CERN:

Marton Ady, Paolo Ferracin, Laura Garcia Fajardo, Roberto Kersevan, Yannis Papaphilippou, Daniel Schörling

KIT:

Axel Bernhard, Sergey Gasilov, Andreas Grau, Erhard Huttel, Anke-Susanne Müller, Robert Rossmanith

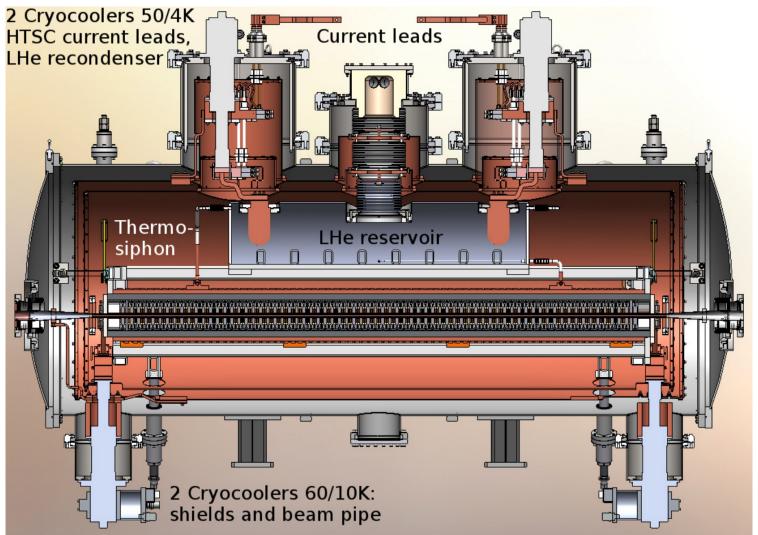
Backup slides

24 Nb-Ti DW, status and experimental plan at ANKA

S. Hillenbrand, for the KIT-CERN collaboration

Wiggler Parameter

Design parameters of the CLIC damping wiggler prototype

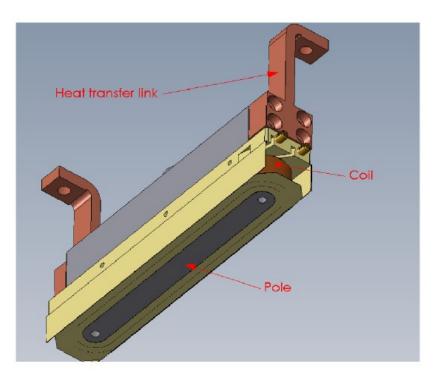

Basic parameters		
Wiggler period λ_w	51 <i>mm</i>	
Magnetic gap	18 <i>mm</i>	
Flux density amplitude on axis $\widetilde{B_y}$	37	in <i>I</i> o
I/I_c on load line @ $T = 4.2K$	86%	CFA
$T_{quench} @\widetilde{B_y} = 3T$	4.8 <i>K</i>	ICFA beam dynamics newsletter 62
Number of main poles	68	n dy
Winding scheme		nam
$1/4 \operatorname{coil}, N_1 I_1$	$62 \times 487A$	ics r
$3/4 \text{ coil}, N_2 I_2$	$124 \times 487A$	news
Main, inner, N ₁ I ₁	$62 \times 487A$	lette
Main, outer, $N_1(I_1 + I_2)$	$62 \times 974A$	er 62
Wire parameters		
Diameter (bare)	0.85 <i>mm</i>	
Nb-Ti:Cu ratio	1.1:1	
Filaments	312	

25 Nb-Ti DW, status and experimental plan at ANKA

S. Hillenbrand, for the KIT-CERN collaboration

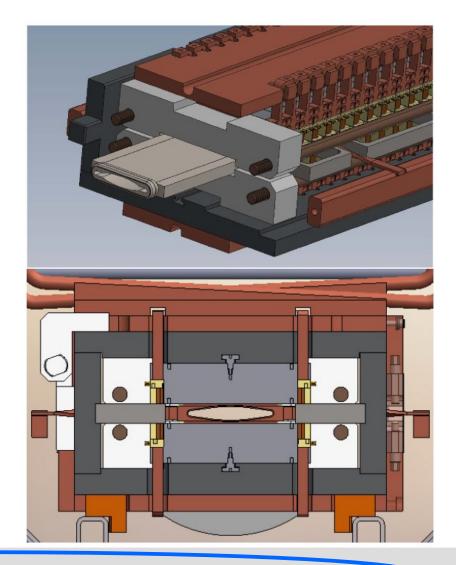
Conduction Cooling III / III

Figures:N. Mezentsev et al. Final design report on CLIC Damping Wiggler Test Device


26 Nb-Ti DW, status and experimental plan at ANKA

S. Hillenbrand, for the KIT-CERN collaboration

Cryo Design: Coil Cooling

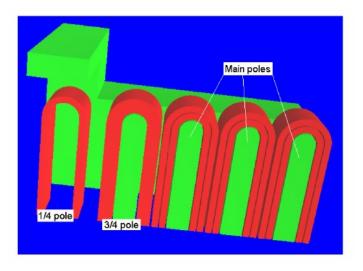


Heat transfer: Extended iron pole \rightarrow Cu plate \rightarrow LHe channel

K. Zolotarev et al., ibid.

Figure: Top: single indirectly cooled horizontal racetrack coil; right: Pole array and cross-section of assembled magnet system

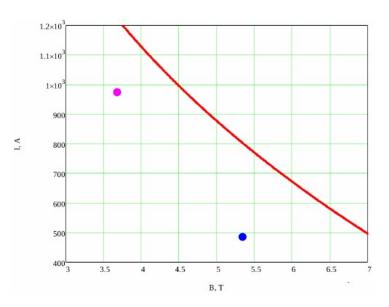
Project Timeline and Status


4/2009 KIT joins CTF3 Collaboration

- 7/2010 First discussions on CLIC/IMAGE wiggler test at ANKA
- 02/2011 Start of negotiations for CERN/KIT collaboration agreement (k-contract)
- 12/2011 KIT orders wiggler from Budker Institute, Novosibirsk
- 05/2012 Conceptual Design Review in Novosibirsk
- 11/2012 CERN and KIT sign k-contract
- 12/2012 Short model tests
- 01/2013 Final Design Review in Karlsruhe
- 01-02/2014 Factory Acceptance Test
- 03-04/2014 Delivery and Site Acceptance Test
- 06/2014 (?) Installation, Final Acceptance Test

2014–2015 Joint experimental program, decision on second project step

Magnetic Design



K. Zolotarev et al., Final Design Report, Novosibirsk (2012)

λ _W	51 mm
magn. gap [mm]	18 mm
<i>B̃_y</i>	3 T
main poles	68
$rac{1}{4}$ coil, NI_1	62×487 A
$rac{3}{4}$ coil, NI_2	124×487 A
main, inner, NI_1	62×487 A
main, outer, $N(I_1 + I_2)$	62×974 A

SC Wire

Diameter (bare)	0.85 mm
Nb-Ti:Cu	1.1
Filaments	312

K. Zolotarev et al., ibid.

Figure: Critical current at 4.2 K and operating points of outer (pink) and inner (blue) coil section

Axel Bernhard for the KIT-CLIC-Collaboration Team, SC Wiggler Prototype Development