Tracking code concepts

Long-Range Wakefields

Conclusions

# Introduction to simulations of recirculating machines such as the CLIC Drive Beam Complex and CTF3

Dario Pellegrini (CERN, EPFL)

Feb 04, 2014







Tracking code concepts

Long-Range Wakefields

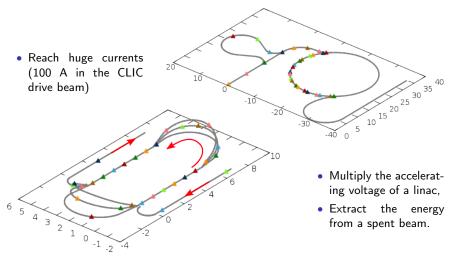
Conclusions

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

#### **Recirculation:**

A wide spectrum of beam manipulations leads to unprecedented performances

- rrents CLIC 20 10 -10 -20 -30 -30 -10 15 20 25 30 35 40
- Reach huge currents (100 A in the CLIC drive beam)


Tracking code concepts

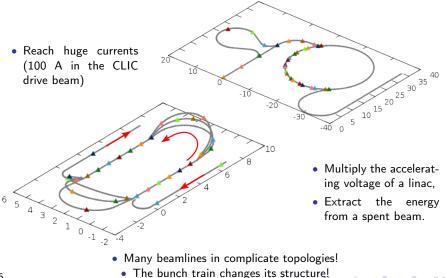
Long-Range Wakefields

Conclusions

#### **Recirculation:**

A wide spectrum of beam manipulations leads to unprecedented performances




Tracking code concepts

Long-Range Wakefields

Conclusions

#### **Recirculation:**

A wide spectrum of beam manipulations leads to unprecedented performances



2/16

Tracking code concepts

Long-Range Wakefields

Conclusions

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

#### **Recirculation:**

#### A challenge for a tracking code

- How to *describe* a machine:
  - Fast and simply  $\rightarrow$  first approach simulation;
  - Accurate and detailed  $\rightarrow$  full machine modelling.

Tracking code concepts

Long-Range Wakefields

Conclusions

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

## **Recirculation:**

#### A challenge for a tracking code

- How to describe a machine:
  - Fast and simply  $\rightarrow$  first approach simulation;
  - Accurate and detailed  $\rightarrow$  full machine modelling.
- How to simultaneously *track* many bunches in such a lattice:
  - Take the right path;
  - Preserve the order of bunches;
  - Manage time dependent elements.

Tracking code concepts

Long-Range Wakefields

Conclusions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

## **Recirculation:**

#### A challenge for a tracking code

- How to describe a machine:
  - Fast and simply  $\rightarrow$  first approach simulation;
  - Accurate and detailed  $\rightarrow$  full machine modelling.
- How to simultaneously *track* many bunches in such a lattice:
  - Take the right path;
  - Preserve the order of bunches;
  - Manage time dependent elements.
- How to be *fast*:
  - Take advantage of modern-multi-core CPUs with parallel computation;
  - Easily access the element algorithms for improvements.

Conclusions

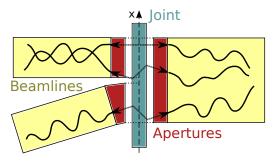
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

#### A tracking code for recirculating machines

- A direct extension of PLACET appeared hard.
- New code written from scratch to:
  - implement and test new ideas to handle recirculation;
  - work without structural constraints.
- Plans for a modularisation of PLACET are ongoing;
- Integration of the recirculating tracker into PLACET will follow.

Concepts of a tracking code for recirculating machines

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ● ●


Tracking code concepts

Long-Range Wakefields

Conclusions

#### Lattice Description

- A Machine consists of a set of interconnected beamlines;
- Beamlines are standard sequences of elements;
- Apertures and Joints:
  - Allow for beamlines connection;
  - Route the bunches through the correct path (based on their offset);
  - Synchronise the machine preserving bunch order.



Conclusions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

#### Machine operation and Synchronisation

- The machine owns *global timer* used for synchronisation → increases at small steps;
- Each bunch owns an *internal timer*  $\rightarrow$  increases as bunch travels through thick elements;
- Bunches travel straight down beamlines, their timer can be greatly increased,
- but are forced to wait at the subsequent joints until the global timer exceeds their internal one.

Conclusions

#### Machine operation and Synchronisation

- The machine owns *global timer* used for synchronisation → increases at small steps;
- Each bunch owns an *internal timer*  $\rightarrow$  increases as bunch travels through thick elements;
- Bunches travel straight down beamlines, their timer can be greatly increased,
- but are forced to wait at the subsequent joints until the global timer exceeds their internal one.



・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Conclusions

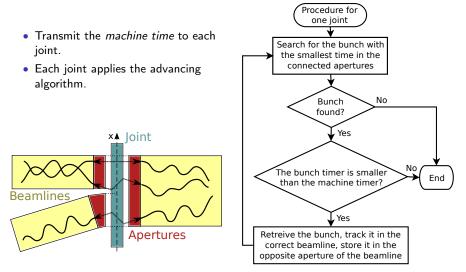
= nan

#### Machine operation and Synchronisation

- The machine owns *global timer* used for synchronisation  $\rightarrow$  increases at small steps;
- Each bunch owns an *internal timer*  $\rightarrow$  increases as bunch travels through thick elements;
- Bunches travel straight down beamlines, their timer can be greatly increased,
- but are forced to wait at the subsequent joints until the global timer exceeds their internal one.



- Global timer steps smaller than shortest beamline  $\Rightarrow$  bunch order is preserved;
- Elements always see bunches in the correct time sequence  $\Rightarrow$  element time is the being-tracked bunch time.


Tracking code concepts

Long-Range Wakefields

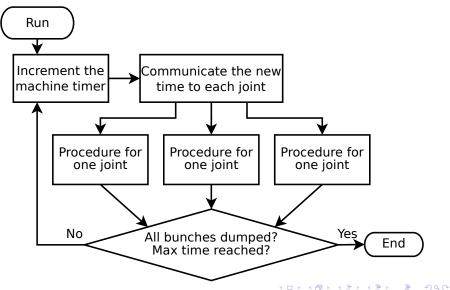
Conclusions

## Tracking Operation

#### **Advance Procedure**






Tracking code concepts

Long-Range Wakefields

Conclusions

## **Tracking operation**

#### **Run Procedure**



## A Physic Study: Long-Range Wakefields

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ● ●

Tracking code concepts

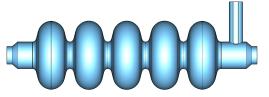
Long-Range Wakefields

Conclusions

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

#### Higher Order Modes and Long-Range Wakefields

- The field in a cavity has many Higher Order Modes (*HOMs*) of oscillation.
- HOMs are excited by bunches passing through the cavity and affect the followings ⇒ long-range wakefields.
- Dipolar modes are particularly bad as they are strong and easily excited by orbit displacements.


Tracking code concepts

Long-Range Wakefields

Conclusions

### Higher Order Modes and Long-Range Wakefields

- The field in a cavity has many Higher Order Modes (*HOMs*) of oscillation.
- HOMs are excited by bunches passing through the cavity and affect the followings ⇒ long-range wakefields.
- Dipolar modes are particularly bad as they are strong and easily excited by orbit displacements.



- SPL cavities: 5 cells design at 720 MHz.
- List of HOMs from M. Schuh, all *Q*-values at TESLA worst.

| f [GHz] | A $[V/C/m^2]$                                                                                                                                                                                                                             | Q                                                    |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| 0.9151  | 9.323                                                                                                                                                                                                                                     | 1e5                                                  |
| 0.9398  | 19.095                                                                                                                                                                                                                                    | 1e5                                                  |
| 0.9664  | 8.201                                                                                                                                                                                                                                     | 1e5                                                  |
| 1.003   | 5.799                                                                                                                                                                                                                                     | 1e5                                                  |
| 1.014   | 13.426                                                                                                                                                                                                                                    | 1e5                                                  |
| 1.020   | 4.659                                                                                                                                                                                                                                     | 1e5                                                  |
| 1.378   | 1.111                                                                                                                                                                                                                                     | 1e5                                                  |
| 1.393   | 20.346                                                                                                                                                                                                                                    | 1e5                                                  |
| 1.408   | 1.477                                                                                                                                                                                                                                     | 1e5                                                  |
| 1.409   | 23.274                                                                                                                                                                                                                                    | 1e5                                                  |
| 1.607   | 8.186                                                                                                                                                                                                                                     | 1e5                                                  |
| 1.666   | 1.393                                                                                                                                                                                                                                     | 1e5                                                  |
| 1.670   | 1.261                                                                                                                                                                                                                                     | 1e5                                                  |
| 1.675   | 4.160                                                                                                                                                                                                                                     | 1e5                                                  |
| 2.101   | 1.447                                                                                                                                                                                                                                     | 1e5                                                  |
| 2.220   | 1.427                                                                                                                                                                                                                                     | 1e5                                                  |
| 2.267   | 1.377                                                                                                                                                                                                                                     | 1e5                                                  |
| 2.331   | 2.212                                                                                                                                                                                                                                     | 1e5                                                  |
| 2.338   | 11.918                                                                                                                                                                                                                                    | 1e5                                                  |
| 2.345   | 5.621                                                                                                                                                                                                                                     | 1e5                                                  |
| 2.526   | 1.886                                                                                                                                                                                                                                     | 1e5                                                  |
| 2.592   | 1.045                                                                                                                                                                                                                                     | 1e5                                                  |
| 2.592   | 1.069                                                                                                                                                                                                                                     | 1e5                                                  |
| 2.693   | 1.256                                                                                                                                                                                                                                     | 1e5                                                  |
|         | 1.347                                                                                                                                                                                                                                     | 1e5                                                  |
| 2.838   | 4.350                                                                                                                                                                                                                                     | 1e5                                                  |
|         | $\begin{array}{c} 0.9151\\ 0.9398\\ 0.9664\\ 1.003\\ 1.014\\ 1.020\\ 1.378\\ 1.393\\ 1.408\\ 1.409\\ 1.607\\ 1.666\\ 1.670\\ 1.675\\ 2.101\\ 2.220\\ 2.267\\ 2.331\\ 2.338\\ 2.345\\ 2.526\\ 2.592\\ 2.592\\ 2.693\\ 2.696\\ \end{array}$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Tracking code concepts

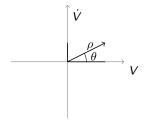
Long-Range Wakefields

Conclusions

### Long-Range Wakefield in Complex Topologies

 $\mathbf{Goal} \rightarrow \mathbf{Reduction}$  to a local problem: interaction bunch-mode in a single cavity

Tracking code concepts


Long-Range Wakefields

Conclusions

## Long-Range Wakefield in Complex Topologies

 $\textbf{Goal} \rightarrow \textbf{Reduction}$  to a local problem: interaction bunch-mode in a single cavity

HOMs are represented as complex numbers:  $z = \rho e^{i\theta}$ 

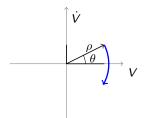


▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Tracking code concepts

Long-Range Wakefields

Conclusions


#### Long-Range Wakefield in Complex Topologies Goal $\rightarrow$ Reduction to a local problem: interaction bunch-mode in a single cavity

HOMs are represented as complex numbers:  $z = \rho e^{i\theta}$ 

• Time evolution:  $z(t + dt) = z(t) \exp\left(-\frac{\omega}{2Q}dt\right) \exp\left(i\omega dt\right)$ 

damping

rotation



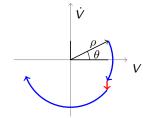
・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

Tracking code concepts

Long-Range Wakefields ○●○○○○ Conclusions

#### Long-Range Wakefield in Complex Topologies Goal $\rightarrow$ Reduction to a local problem: interaction bunch-mode in a single cavity

HOMs are represented as complex numbers:  $z = \rho e^{i\theta}$ 


• Time evolution:  $z(t + dt) = z(t) \exp\left(-\frac{\omega}{2Q}dt\right) \exp\left(i\omega dt\right)$ 

damping

rotation

• Bunch  $\rightarrow$  mode interaction:

 $\Im(z) = \Im(z_0) + Ne A L_{cav} \delta x$ 



Tracking code concepts

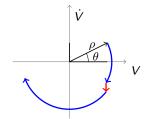
Long-Range Wakefields

Conclusions

#### Long-Range Wakefield in Complex Topologies Goal $\rightarrow$ Reduction to a local problem: interaction bunch-mode in a single cavity

HOMs are represented as complex numbers:  $z = \rho e^{i\theta}$ 

• Time evolution:  $z(t + dt) = z(t) \exp\left(-\frac{\omega}{2Q}dt\right) \exp\left(i\omega dt\right)$ 


damping

rotation

- Bunch  $\rightarrow$  mode interaction:
  - $\Im(z) = \Im(z_0) + Ne A L_{cav} \delta x$
- Mode  $\rightarrow$  bunch interaction:

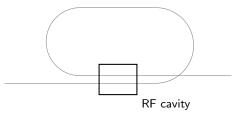
$$x' = x'_0 + \frac{e\,\Re(z)}{\gamma\,m_e\,c^2}$$

Iterated over all the HOMs of the cavity.



うして ふゆう ふほう ふほう うらう

Tracking code concepts


Long-Range Wakefields

Conclusions

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

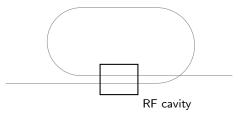
#### A Single Cavity Case

A bunch sees an RF deflector a few times in a Combiner Ring.



• Bunches establish a feedback system: the orbit excitation collected at the first passage, interacts with the modes at the second passage.

Tracking code concepts


Long-Range Wakefields

Conclusions

ション ふゆ アメリア メリア しょうくの

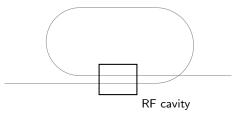
#### A Single Cavity Case

A bunch sees an RF deflector a few times in a Combiner Ring.



- Bunches establish a feedback system: the orbit excitation collected at the first passage, interacts with the modes at the second passage.
- Can a *positive feedback* take place?

Simplified formula for threshold current estimation:  $I_{th} = \frac{2pc^2}{e\omega \frac{R}{Q}Q} \frac{1}{T_{12}\sin(\omega t_r)}$ 


Tracking code concepts

Long-Range Wakefields

Conclusions

#### A Single Cavity Case

A bunch sees an RF deflector a few times in a Combiner Ring.

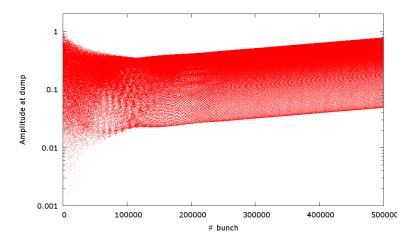


- Bunches establish a feedback system: the orbit excitation collected at the first passage, interacts with the modes at the second passage.
- Can a *positive feedback* take place?

Simplified formula for threshold current estimation:  $I_{th} =$ 

$$=\frac{2pc^2}{e\omega\frac{R}{Q}Q}\frac{1}{T_{12}\sin(\omega t_r)}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()


- Simulation technique:
  - () Inject a bunch with some offset  $\rightarrow$  modes excitation.
  - ${\it 2\!\!0}$  Inject many centred bunches  $\rightarrow$  look at their orbit excitation (amplitude at dump).

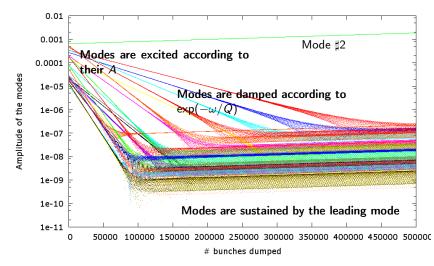
Tracking code concepts

Long-Range Wakefields

Conclusions

#### Evolution of the excitation




Tracking code concepts

Long-Range Wakefields

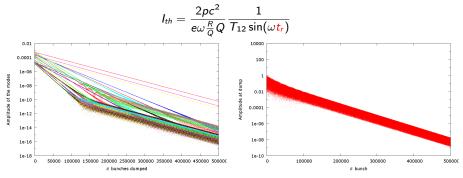
Conclusions

#### A look at the modes

The amplitude of the 26 modes of the cavity is plotted over the same timespan of the previous slide.



Tracking code concepts


Long-Range Wakefields 00000●

э

Conclusions

## Mitigation of mode #2

#### by matching the return time



- Now the feedback on mode #2 is negative!
- The initial excitation is damped;
- Bunches coming later are less effected by it.

## First Application to a Real Machine: CTF3<sup>1</sup>

- Techniques for tracking non-linear dispersion and chromaticity are being investigated;
- Detailed simulations of CTF3 Combiner Ring will start soon;
- Achieve the first start-to-end simulation with automatic handling of the recombination process:
  - Reconstruction of the machine model,
  - Measurements of chromatic emittance growth,
  - Machine optimisation,
  - Experimental verification of mode suppression.
- Code will be consolidated;
- Knowledge transfer to the CLIC Drive Beam Complex, and (multipass) Energy Recovery Linacs will follow.

Tracking code concepts

Long-Range Wakefields

Conclusions

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで



- New code has been developed to handle the issues related to recirculation:
  - Bunch routing over multiple beamlines,
  - Preservation of the order of bunches,
  - Handling of time-dependent elements,
  - Introduction of a model for Long Range Wakefields;
- Multibunch instability can be investigated even when the bunch train is altered by recirculation;
- Experimental validation is foreseen in the next months at CTF3;
- Applications to CLIC Drive Beam Complex will follow.

Thank You!

