#### Performance of CLIC prototype accelerator structures tested at Nextef

CLIC2014 4 February 2014 Toshiyasu Higo (KEK)

# Contents

- Overview of Nextef high gradient tests
- Most recent result of TD24R05#4
- Comparison of recent structure result
- Future activities at Nextef
- Issues of Nextef high power test

## Overview on Nextef high gradient tests

- Idea
  - Test CLIC prototype structures made as twin
  - Fabrication based on SLAC/KEK
  - Independent high gradient tests
- Work share
  - Design by CERN
  - Fabrication & test by SLAC & KEK
- History
  - Started in 2008 to test CLIC prototype structures
  - Has kept running to date and in future as needed

# **CERN/SLAC/KEK** test flow



#### Fabrication and test of LC prototype structures T18 $\rightarrow$ Quad $\rightarrow$ TD18 $\rightarrow$ T24 $\rightarrow$ TD24R05 $\rightarrow$ TD24R05



CLIC2014 (Higo)



### **High-gradient test at Nextef**



#### LCWS2013 at Granada

#### T24#3 BDR evolution at 252ns normalized 100MV/m

T24#3 Breakdown rate at 252nsec

#### T24#3 BDS vs time at 252ns 100MVm



We understand the BDR has been kept decreasing.

-BDR (400hr-)

BDR (1000hr-)

BDR 1420hr BDR 1571hr

120

□ BDR (600hr-)

0.0001

 $10^{-5}$ 

10-6

 $10^{-1}$ 

 $10^{-8}$ 80

90

**Excellent BDR** 

performance in T24#3.

100

MV/m

110

BDR (BD/pulse/m)



# Somewhat poor results in the recent damped structures

- Started with T24#3 showing excellent performance in 2011.
- TD24#4 in 2012 behaved not so good as estimated from excellent BDR result of T24#3.
- Revised design,TD24R05#2, showed in late 2012 hot spots after going up to 110 MV/m and BDR was stayed poor.
- Tried another TD24R05#4 in 2013.

TD24R05#2 presented in CLIC2013

# Hot spots localized in each cell TD24R05#2

#### Run 27 at 100 MV/m Run 31 at 110 MV/m 0 25 0 20 0 Cell kek[cell no.] Cell kek[cell no.] 0 0 0 10 0 00 0 0 8 -5 o 0 -150-100-50 0 50 -150-100-50 0 50 100 Rs BD phase[deg@Xband] Rs BD phase[deg@Xband] **Only downstream** Both up and down

# Most recent prototype structure TD24R05#4

 Considering the hot spot appearance in TD24R05#2, we tried to install #4 carefully in cleanness.

- However, the treatment was probably not well improved, as shown in next page.
- Cleaner treatment may be needed.

#### TD24R05#4 installation



**Tried to install** in a better situation on dust and environment, though we should admit that it was still in the poor level.

#### TD24R05#4 Initial vacuum characteristics as usual



### TD24R05#4 Processing whole history





CLIC2014 (Higo)





#### TD24R05#4 #AC-BD & 1<sup>st</sup>-pulse BD



### TD24R05#4 BDR (still preliminary)

| Run | Integrated<br>RF-ON<br>time | Eacc(MV/<br>m) | #ACC-BD | Period<br>ГHour] | BDR[10^-6<br>bpp/m] |
|-----|-----------------------------|----------------|---------|------------------|---------------------|
| 28  | 1651                        | 100            | 97      | 155.5            | 17                  |
| 29  | 1932                        | 95             | 35      | 279.2            | 3.3                 |
| 30  | 2121                        | 90             | 1       | 190*             | 0.14                |
| 41  | 2703                        | 100            | 14      | 65.73            | 5.64                |
| 43  | 3124                        | 100            | 48      | 358.17           | 3.54                |
| 45  | 3280                        | 101            | 50      | 142.67           | 8.90                |
| 47  | 3319                        | 99             |         | 16.27            |                     |

\* Run time and detailed checking of BD pulse should be made for final values.

#### BDR TD24R05#4 (preliminary)



CLIC2014 (Higo)



CLIC2014 (Higo)

# Further investigation

- Dark current evolution was measured. Waiting for analysis.
- The clear hot spot was not observed, though dull peak was once seen in cell 5-10 area.
- Interesting to see how the BDR evolves.
- Also worthwhile to taste it with special operations in pulse shape etc.
- Want to see the behavior through longer pulse than 252nsec or higher peak power than 100MV/m.

# Further activities of Nextef

- Prototype structure
  - TD24R05 made by KEK
  - Choke-mode by Tsinghua
  - Actual CLIC prototype
    - Compact coupler, SiC, and so on
- Single-cell SW test
  - TD24 with various fabrication technologies
    - All milling, diamond milling, large grain material, eyc.
    - Quadrant
    - Brazed cavity by MHI

# Basic studies with simpler experimental setup

- The shield room is ready once klystron is recovered.
- Idea is to test first the performance around 100 MV/m. Then test at higher gradient.
- And compare various victims from design and technology points of view.

## Single-cell SW braze-assembled by MHI







Vacuum tightness was confirmed.

Proceed to actual cavity production by end of March.

# Quadrant in preparation

- Features
  - Finite gap (0.1mm) against virtual leak
  - Large radius (R0.4mm) at opening to reduce field enhancement
- High gradient test is foreseen this year
  Single-cell test setup configuration as SLAC
  Assembly with EBW followed by brazing
  - Assembly with EBW followed by brazing

#### Test on quad-type "singe-cell" cavity



Quad-type single cell cavity connected to mode launcher.

Quad is in production now. Mode launcher is under production by SLAC.

2014/2/4

# Making prototype structure

- Re-furbish the fabrication in KEK
  - CP basically followed SLAC procedure
  - Hydrogen furnace for DB
  - Brazing in H2 or vacuum
  - Vacuum baking will be implemented in the brazing step by vacuum furnace (maybe from the 2<sup>nd</sup> one?)

#### Diffusion bonding was re-confirmed



# **Issues in KEK**

- Biggest issue also in is to have RF power source. We do not have any spare klystron but does not have simple solution.
  - Still PPM? -- XL4? -- medium power + pulse compression? ----- to be discussed
- We want a plan of the fabrication of actual CLIC prototype structure.
  - Better to advance to those, more practical, such as compact coupler, SiC, and so on.
- We want to survive and introduce young colleagues
  - Under the SuperKEKB effort in 2014-2015-??
  - and the ILC movement in Japan.

# Conclusion

- Recent 24-cell damped structures, showed gradually better performance but there is still room for improvement.
- We continue fabrication of a complete structure by KEK, in addition to SLAC/KEK.
- We keep long-term evaluation study on CLIC prototype structures.
- We will test other structures, such as choke mode, in collaboration with Asian institutes under CLIC collaboration.
- Finally but might be most, we should find a solution against RF source problem.

# Additional materials

#### Field Enhancement due to the Concave Structure



Gap to avoid virtual leaks Large chamfer to suppress field enhancements









- 1. VAC 900 degC
- 2. Partial 1hr?
- 3. vacuum 1hr?
- 4. Temp fall
- 5. Quick extraction
- 6. Seal

### KEK-based vacuum baking in consideration



#### **Copper surface evaluation**



CLIC2014 (Higo)

#### MLG-64(エンドミル) ①水素炉1020°C/60min



#### End mill (without CP) → hydrogen furnace

#### MLG-29(エンドミル)

⑥真空炉パーシャル1040℃/60min +真空炉950℃/10min +真空炉800℃/10min +真空炉800℃/60min

#### End mill (without CP) → vacuum furnace with partial N2



