

AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY

Development of front-end electronics for future LC at AGH-UST

M. Firlej, T. Fiutowski, M. Idzik, Sz. Kulis, J. Moroń, D. Przyborowski, K. Świentek

Faculty of Physics and Applied Computer Science AGH University of Science and Technology

> CLIC Workshop 2014 04/02/2014 CERN

- Introduction and motivation
- Readout architecture (examples: Linear Colliders, LHCb upgrade)
- ASICs R&D
- Front-end (LumiCal, SALT, CLIC)
- ADC (fast sampling SAR ADCs)
- Multichannel system aspects (MUX, PLL, etc...)
- Summary

Disclaimer: this talk will focus mainly on (micro)electronics

Introduction Readout architecture

- This architecture is well suited for high rate systems requiring **time and amplitude measurement** (forward regions of CLIC detector, LHC upgrade)
- Why this type or architecture was not feasible in the past ?
 - → in older technologies, power consumption of fast ADC was too high to place ADC in each readout channel

Introduction Readout electronics of Luminosity calorimeter AGH for future Linear Collider

LumiCal detector will contain 30/40 layers of sandwich Si-W calorimeter (more than 200k channels)

CLIC Workshop 2014

Motivation: Increase trigger rate from 1 MHz to 40 MHz

→ new readout electronics needed in LHCb Upstream Tracker System (present TT - Trigger Tracker)

- 128 channels
- Preamplifier-shaper, 6-bit ADC, zero supp., serialization, fast data transmission
- CMOS 130 nm CMOS technology

Front-end ASICs

(fast shaping, low power)

Channel schematic diagram

Design specs:

- 8 channels
- Cdet ≈ 5 ÷ 50pF
- 1st order shaper (Tpeak \approx 50 ns)
- Variable gain:
 - calibration mode MIP sensitivity
 - physics mode input charge up to ~5 pC
- Power pulsing implemented
- Power consumption ~1.5 mW/channel

Very Preliminary Measurements:

- Fully functional
- Tpeak ≈ 51 ns
- Calibration mode @10pF:
 - gain 4.1 mV/fC
 - linear range ~60 fC
 - ENC 930 e-
- Physics mode @10pF
 - gain 105 mV/pC
 - Linear range ~2.7 pC (saturates >5pC)

CLIC Workshop 2014

Front-end AGH Shaper design for lowest pileup (LHCb driven)

Is it possible, with realistic shaper complexity and power consumption, to shorten a pulse tail to less than 5% of pulse amplitude after 2*T_{peak}?

Main front-end features of the prototype:

- Architecture: Preamplifier, PZC, 3-stage shaper
- Preamplifier: NMOS input cascode
 with boosting amplifiers
- Shaper: with **complex poles and zeros**
- T_{peak} : • C_{det} :
- ~ 25ns
- 5-35 pF
- Power cons.: < 1.9 mW

May be **interesting for high occupancy** (more than one hit per channel per bunch train) **CLIC detector regions**

CLIC Workshop 2014

- Simplest possible shape (step) will allow amplitude information reconstruction even in case of high occupancy
- Time resolution of single event tagging limited by rise time of preamplifier and ADC sampling frequency

Analog-to-Digital converters

(low power, high sampling frequency)

CLIC Workshop 2014

SAR ADC AGH Architecture&Design considerations

Architecture of ADC:

- Differential segmented/split DAC with MCS switching scheme *ultra low power*
- Dynamic comparator *no static power consumption, power pulsing for free*
- Asynchronous logic no clock tree *power saving, allows asynchronous sampling*
- Dynamic SAR logic much faster than conventional static logic

Design considerations:	LHCb upgrade	LumiCal		
 Resolution 	6 bits	10 bits		
 Variable sampling frequency 	up to ~90 MS/s	up to ~50 MS/s		
 Power consumption at 40 MS/s 	~0.35 mW	~1 mW		
 pitch, ready for multichannel integration 	40 µm	146 µm		
CLIC Workshop 2014	Szymon Kulis			

6-bit SAR ADC for LHCb uprgade Importance of post-layout simulations

Simulated ADC performance:

- Simulated ENOB >5.8 bits
- Maximum sampling rage ~ 90 MS/s
- Power consumption ~ 0.35 mW @ 40 Ms/s

ADC prototype contains:

- 8 channels of 6-bit SAR ADC in **40µm pitch**
- Multiplexing&Serialization circuitry
- PLL prototype (discussed later...)
- SLVS I/O circuitry

CLIC Workshop 2014

10-bit SAR ADC for Lumical

- Maximum sampling rate ~50 MS/s
- Power consumption
 - \sim 1mW @ 40 MS/s

Szymon Kulis

in 146µm pitch

• SLVS I/O circuitry

Multiplexing&Serialization circuitry

• PLL prototype (discussed later...)

to PC via Ethernet for offline analysis

CLIC Workshop 2014

Frequency [Hz]

-100

6-bit SAR ADC for LHCb upgrade Static tests - linearity (@50 MS/s)

- Measurements show that ADC works very well
- At 50MHz sampling frequency good linearity INL, DNL < 0.5 is seen

6-bit SAR ADC for LHCb upgrade Dynamic tests - ENOB effective resolution

- Measurements show very good dynamic behaviour.
- The measured ENOB is between 5.7 5.9 bits
- The ADC works well for sampling frequencies beyond 80 MHz

10-bit SAR ADC for LumiCal Static measurement results

Transfer function

INL/DNL measurements

- ADC works well in the whole input signal range
- Generally, good linearity is measured, although for a few codes improvement is still needed

CLIC Workshop 2014

10-bit SAR ADC for LumiCal Dynamic measurement results (@10 MS/s)

ENOB~9.3 up to Nyquist input frequency for $f_{sample} \sim 20 MHz$

ADC works for f_{sample} up to about 50 MS/s, but above 20 MS/s ENOB start to decrease. Problem with jitter above 20 MS/s found..., will be fixed in next submission.

CLIC Workshop 2014

Prototypes of SAR ADC vs State-of-the-Art Performance of first prototypes

Main features: • Resolution [bits] • Sampling frequency [MS/s]	LHCb 6 > 80	LumiCal 10 20 (50*)	100 10 [rd] ^S _y	[6] [8]	6b 500MS o [7] 6b this work 6b	/S 9b 50 600MS/s AGH-UST 6b 40-80MS/	MS/s [9] 9 s [8	b 40MS/ 32] 3b	/s [10] AGH 10b 2	10b 100M&/s [31] -UST 20MS/s 10b
 Power cons. [mW] @ 40 MS/s 	0.35	1	1	5b 250MS/s	50MS/s 3	[11] 7b	1 150MS/s	IOMS/s	10b 1MS/s	50MS/S
• Size [mm²] Dim. [μm]	0.016 40 x 400	0.087 146x600	0.1 25 10	30	35	40	45	50	55	60
• DNL/INL [LSB]	<0.4	~1.0	1	[8]					A	AGH-UST
 SINAD@40MS/s [dB] ENOB [bits] 	37.5 5.8	>56 9.3	rea [mm ²]		[7]		[9]	•••	[10]	0b 20 MS/s
• FOM [fJ/conv]	~150	~50	ā 0.01		o AGH	o I-UST 0-80MS/s	l	32]	[12]	[31]
Performance of	of our <i>I</i>	ADCs	0.001 25	30	35	40 SNI	45 DR	50	55	60
IS SIMI	ar to									

AGH-UST data were added to Table taken from "this work" : P.Nuzzo, C. Nani, at el., "A 6-Bit 50-MS/s Threshold Configuring SAR ADC in 90-nm Digital CMOS",

IEEE Trans. On Circuits and Systems I vol.59 pp.80-92 January 2012

*) ADC works for f_{sample} up to about 50 MS/s, but above 20 MS/s ENOB start to decrease.

State-of-the-Art designs

Multichannel readout with ADC conversion becomes real System on Chip (SoC) and needs peripheral circuits:

- PLL/DLL for data multiplexing&serialization,
- DACs,
- Precise voltage reference (bandgap),
- temperature sensor (PTAT),
- Slow control (eg. SPI or I2C),
- I/O circuits like LVDS/SLVS,
- Digital Signal Processing (Zero suppression, deconvolution, etc...)

Prototype of multiplexer and serializer blocks for multichannel SAR ADC

Specifications & implementation issues:

- 8 channels of 10-bit (6-bit) SAR ADC
- Technology 130 nm CMOS
- - Full serialization: one data link per all channels (external clk division or PLL clk generation)
 - Partial serialization: one data link per channel (external clk division or PLL clk generation)
 - Test mode: single channel output (max fsmp ~50 Msps)
- High speed SLVS interface (~1GHz)
- Multiple clock generation schemes (with or without PLL)
- PLL for data serialization
- Power pulsing

Multichannel readout aspects Low power PLL in 130 nm CMOS

Main features:

- General purpose PLL block
- Very wide output frequency range:
 10MHz 3.5GHz (tested up to 1.6GHz)
 - Gaps in frequency are found in the prototype to be eliminated...
- 16 VCO modes Automatically (or manually) changed
- Jitter 15-70 ps (to be improved...)
- Power consumption ~0.6mW@1GHz
- Different loop division factors: 6,8,10, 16
- Size 300um x 300um

Very low power PLL has been developed and the prototype is fully functional. Few issues (frequency gaps,

jitter) need to be improved

CLIC Workshop 2014

Potential of deep-submicron CMOS technologies, together with recent developments in ADC architectures (SAR in particular) allow to build multichannel front-end ASICs comprising ADC in each channel, without penalty on power consumption

(Modern ADC can consume significantly less power than preamp&shaper circuitry)

Multichannel readout ASIC becomes complex Systems on Chip (SoC), comprising hundreds of channels, preamplifier, shaper, ADC, DSP, PLL, DLL, serializer/deserializer, digital interfaces, etc...

Thank you for attention

- K. Świentek, M. Firlej, T. Fiutowski, M. Idzik, J. Moroń, T. Szumlak
 "SALT new silicon strip readout chip for the LHCb Upgrade", TWEPP2013 23-27 September 2013, Perugia Italy
- J. Moron, M. Firlej, T. Fiutowski, M. Idzik, Sz. Kulis, K. Swientek.
 "Development of variable sampling rate low power 10-bit SAR ADC in IBM 130 nm technology", TWEPP2013 23-27 September 2013, Perugia Italy
- M. Firlej, T. Fiutowski, M. Idzik, J. Moroń, K. Swientek,
 "Development of scalable frequency and power Phase-Locked Loop (PLL) in 130nm CMOS technology", TWEPP2013 23-27 September 2013, Perugia Italy
- Sz. Kulis, A. Matoga, M. Idzik, K. Świentek, T. Fiutowski, D. Przyborowski
 "A general purpose multichannel readout system for radiation detectors" Journal of Instrumentation, JINST 7 T01004, January 2012
- M. Idzik, Sz. Kulis, D. Przyborowski
 "Development of front-end electronics for the luminoisty detector at ILC" Nucl. Instr. and Meth. A 608 (2009) pp.169-174
- M. Idzik, K. Swientek, T. Fiutowski, S. Kulis, P. Ambalathankandy
 "A power scalable 10-bit pipeline ADC for Luminosity Detector at ILC" JINST 6 P01004 2011