

Measurement of H→ WW* fully hadronic in HZ at 350 GeV

Measurement of H to ZZ* at 1.4 TeV

status reports

M. Pandurović

G. Milutinović-Dumbelović

I. Božović-Jelisavčić, S. Lukić, P. Roloff

M. Pandurović, CLIC Workshop, 02. February 2014.

♣ HEP € \$0\$P VI#(X

Common points

» We are measuring BF of H→VV (V=W,Z) to extract Higgs couplings $g^{2}_{HVV} \cdot g^{2}_{HVV'}$

 Γ_{H}

- » Multijet final states
- » Full analysis chain
- » The status of both analysis after the preselection will be presented

2

Common points

Simulation and Reconstruction

Fully simulated events:

- » Event generation with WHIZARD v.1.95 including ISR and BS
- » Beamspectrum generated with GUINEAPIG
- » Hadronization with PYTHIA
- » Assuming m_H=126 GeV
- » CLIC_ILD detector
- Particle reconstruction and identication using PandoraPFA

Measurement of H→ WW* fully hadronic in HZ at 350 GeV

Mila Pandurović

M. Pandurović, CLIC Workshop, 02. February 2014.

Introduction

HZ @350GeV $\sigma(e^+e^- \rightarrow HZ)=134 \text{ fb}$ H \rightarrow WW \rightarrow qqqq, Z \rightarrow ff, f=e,µ,q

Favourable BF: BF(H→WW)~23% BF(WW→qqqq)~45%

BF(Z→ll)~10% BF(Z→qq)~70%

CLIC Workshop, 02. February 2014.

Signal and background processes

Signal HZ, H→WW→qqqq	σ [fb]
Z→ee	0.48
Z→µµ	0.48
Z→qq	9.7
Background	
HZ, other H decays, Z vis. d.	92.02
e⁺e⁻ →qqqq	5847
e⁺e⁻ →qqll	1704
e⁺e⁻ →qqlv	5914
e⁺e⁻ →qqvv	324.6

M. Pandurović, CLIC Workshop, 02. February 2014.

Analysis chain

 $H \rightarrow WW \rightarrow qqqq$, $Z \rightarrow ll$

Semileptonic FS: $H \rightarrow WW \rightarrow qqqq$, $Z \rightarrow ll$, $l=e, \mu$

Isolated lepton finder ! FastJet Finder: Kt exclusive algorithm - 4 jet FS

Hadronic FS:

$H \rightarrow WW \rightarrow qqqqq$, $Z \rightarrow qq$

FastJet Finder: Kt exclusive algorithm - 6 jet FS

- ✓ Lepton finding
- ✓ Jet Clustering
- ✓ Preselection optimization
 - » mH , mW1, mW2, mZ, pT jet , Evis, jet transitions, (Θ_{el})
- × Flavour tagging (b,c) LCFIPlus to reduce H->bb background
- \times MVA analysis

Signal Monte Carlo

$H \rightarrow WW \rightarrow qqqq$, $Z \rightarrow ll$

- » WW decaying into four jets: real and off-shell W.
- » The reconstruction is based on the pari of jets with the mass closest to the mass of real W.

Isolation of lepton

» Based on the track energy of a lepton candidate and calorimeter depositions within a cone of size $\cos \theta = 0.995$ around lepton candidate track.

M. Pandurović,

CLIC Workshop, 02. February 2014.

Lepton isolation

 $H \rightarrow WW \rightarrow qqqq$, $Z \rightarrow ll$

M. Pandurović,

CLIC Workshop, 02. February 2014.

♣ HEP & ROSP VIH(X

» reconstruction focuses on a real W: jet pair with the mass closest to the W mass is chosen as a W candidate

45 GeV < m_w < 95 GeV

65GeV < m_H < 155 GeV

$H \rightarrow WW \rightarrow qqqq$, $Z \rightarrow ll$

» Invariant masses of jet pair and lepton pair to reconstruct
 W* candidate
 Z candidate

m_{w*} < 65 GeV

 $40 \text{ GeV} < m_2 < 110 \text{ GeV}$

$H \rightarrow WW \rightarrow qqqq$, $Z \rightarrow ll$

JetPt >20 GeV

100 GeV<Evis <300 GeV

M. Pandurović,

CLIC Workshop, 02. February 2014.

$H \rightarrow WW \rightarrow qqqq$, $Z \rightarrow ll$

Preselection

$H \rightarrow WW \rightarrow qqqq$, $Z \rightarrow ll$

	m _z	m _H	Jet transitions	Total preselection	σ[fb]	σ[fb] after pres.
Signal eff.	84.2%	76.6%	63.3%	52.0%	0.48	0.25
Background eff.						
Other H decays from HZ→ee	45.5%	30%	81.2%	8.0%	4. 14	0.33
qqqq	0.0053%	3.5%	32.3%	0.005%	5847	0.29
qqll	5.5%	26.8%	12.9%	0.22%	1704	3.78
qqlv	4.5%	69.0%	4.4%	0.08%	5914	4.73
qqνν	0.4 %	83.0%	5.8%	0.02%	324.6	0.06

M. Pandurović, CLIC Workshop, 02. February 2014.

15

- » The status of the H→WW→qqqq , Z →ll at 350 GeV is being presented
- » Preselection cuts are being optimized to maximize background suppression and preserve signal efficiency
- » After preselection S/B is $\sim 3/100$ (not final)
- » Precise lepton isolation important for good reconstruction of invariant Z mass which is the most effective preselection variable

Current status of the H to ZZ* analysis at 1.4 TeV

G. Milutinović - Dumbelović

CLIC Workshop, 02. February 2014. M. Pandurović,

Signal

Three possible ZZ decay topologies:

- qqqq~48%
- qqll~42%
- 1111~10%

Only fully-hadronic final state considered

CLIC Workshop, 02. February 2014. M. Pandurović,

🔮 HEP EROVP VIH(*)

Signal and bck cross-sections

Process	$\sigma[fb]$
$e^+e^- \rightarrow Hv_e\overline{v_e}, H \rightarrow ZZ - > qqqq$	3.45
$e^+e^- \rightarrow qq v_e \overline{v_e}$	788
$e^+e^- \rightarrow qqqq V_e \overline{V_e}$	24.7
$e^+e^- \rightarrow Hv_e\overline{v_e}, H \rightarrow WW - > qqqq$	27.6
$e^+e^- \rightarrow qq$	4009.5
$e^+e^- \rightarrow qqqq$	1328.1
$e^+e^- \rightarrow qqqqll$	71.7
$e^+e^- \rightarrow qqqql v$	115.3
$e^+e^- \to Hv_e \overline{v_e}, H \to bb$	136.94
$e^+e^- \rightarrow H\nu_e\overline{\nu_e}, H \rightarrow ZZ - > qqll / llll$	0.177

- The most dominant $e^+e^- \rightarrow qq$ and $e^+e^- \rightarrow qqqq$ backgrounds will be rejected by the E_{vis} based preselection.
- $\gamma\gamma \rightarrow hadrons$ backgound has been overlade before the digitization phase.

CLIC Workshop, 02. February 2014.

Preselection

2 jet topologies

 $H \rightarrow bb$

- 40GeV<InvMassZ1<110GeV
- InvMassZ2<65GeV
- 80GeV<InvMassHiggs<180GeV
- -log₁₀y₃₄<3.5
 -log₁₀y₂₃<3.0
- $150 \text{GeV} \ll 650 \text{GeV} \longrightarrow$

$$e^+e^- \rightarrow qq$$
 $e^+e^- \rightarrow qqqq$

- $P(b)jet_1 < 0.95$
- $P(b)jet_2 < 0.95$

Higgs Invariant Mass

Background Signal

80GeV < InvMassHiggs < 180GeV

M. Pandurović,

CLIC Workshop, 02. February 2014.

Background Signal

$P(b)jet_1 < 0.95$

CLIC Workshop, 02. February 2014. M. Pandurović,

\$ HEP & ROVP VIH(*

Signal and bck. after preselection

Process	$\sigma[fb]$	Efficiency(%)
$e^+e^- \rightarrow Hv_e\overline{v_e}, H \rightarrow ZZ \rightarrow qqqq$	1.97	57
$e^+e^- \rightarrow qq v_e \overline{v_e}$	165.48	21
$e^+e^- \rightarrow qqqqv_e\overline{v_e}$	0.87	3.53
$e^+e^- \rightarrow Hv_e\overline{v_e}, H \rightarrow WW - > qqqq$	19.87	72
$e^+e^- \rightarrow qq$	135.92	3.39
$e^+e^- \rightarrow qqqq$	48.47	3.65
$e^+e^- \rightarrow qqqqll$	1.84	2.57
$e^+e^- \rightarrow qqqqlv$	0.51	0.44
$e^+e^- \rightarrow Hv_e\overline{v_e}, H \rightarrow bb$	12.06	8.81
$e^+e^- \rightarrow H v_e \overline{v_e}, H \rightarrow ZZ - > qqll / llll$	0.05	31.5

- Z is decaying more frequently to b quarks than W what results in enlarged selection efficiency.

CLIC Workshop, 02. February 2014. M. Pandurović,

- Preselection completed to reduce the most dominant • backgrounds.
- Reasonably high rejection rate for bck. processes, except for WW fully hadronic decay.
- An attempt to optimize further preselection will be made before MVA analysis.

CLIC Workshop, 02. February 2014. M. Pandurović,

Backup

M. Pandurović,

CLIC Workshop, 02. February 2014.

🕹 HEP & XOVP VIH(X

25

Jet transitions

 $-\log_{10}(y34) < 3.5$

- Require event to be 4-jet like: use y_{34} (the k_T value at which the event transit from 3 jets to 4 jets)

CLIC Workshop, 02. February 2014. M. Pandurović,

Jet transitions

 $-\log_{10}(y23) < 3.$

CLIC Workshop, 02. February 2014.

M. Pandurović,

