

Status and plans for Two-Beam Test Stand and Two-Beam module in CTF3

Wilfrid Farabolini

Contents

- Test of the 2 accelerating structures installed in TBTS
 - Energy gain performances
 - Beam kick experiment
 - BD statistics
 - Wake Field Monitors
 - Beam shape change after ACS
- Diagnostics tests
 - Electro Optical System for Bunch Length Measurement
 - Cavity BPMs
 - Diamond detector
 - Cherenkov crystals for spectrometer
 - Coherence length of Optical Diffraction Radiation
- Installation of CLIC module
- Tests planned with the CLIC module

2 Accelerating Structures in the TBTS

TD24 structure

ACS tank

TBTS

One PETS for 2 structures

Probe beam Energy with and w/o RF power after phase "optimization"

Improvement of RF lines calibration

Injection after the 50 dB coupler of a RF calibration signal (1 kW – 11994.2 + 2 MHz)

Beam kick

2 models for a "single" phenomena

Magnetic deflection by a BD arc of 200 A approx.

Asymmetric blowout of the BD inhomogeneous plasma [*].

[*] Refraction of e⁻ beam due to plasma lensing at a plasma-vacuum interface, A.A. Sahai, T.C. Katsouleas, June 16, 2013

Experiment to discriminate these 2 phenomena (large statistics needed)

- Use a delayed (several μ s) probe beam after the BD

- Send the PB at zero crossing

BD statistics studies

Wake Field Monitors study

- Two types of WFM installed on the structures : (HOMs: 18 GHz and 24 GHz).
- Resolution already better than 20 μ m.
- Robustness with nominal 12 GHz RF power (42 MW) still to be investigated

Re-alignment of the 2 structures

New acquisition electronics

- Present log detector PCBs and crate
- Based on a novel "log detector" chip still operational at 24 GHz
- New design shared with X-Box2 data acquisition system
- WFM tests to be resumed in February with RF nominal power

Octupolar modes evidences

Large beam (Φ > 5 mm) shadowed by the structure, non accelerated (left) and accelerated (right)

For very weak RF power (few MWs, uncertain phase)

At zero-crossing (rising RF power side), 25 MW

At zero-crossing (falling RF power side), 25 MW

Effect of the disks symmetry (HOM damping waveguides) already foreseen but not significant for a well centered small size beam (green beamlets on the simulation).

"Multipoles of the accelerating field and the beam distortion in TBTS", Alexej Grudiev, 29/05/2013 CLIC RF Structure Development Meeting

Beam shape and coupling

Figure : Image of the probe beam for a non-accelerated (a) and accelerated case (b). A change of the beam position as well as of the size and the x-y-correlation is visible.

Question: How does the RF influence the beam transversely?

"Measurement of transverse coupling in the TBTS, Christopher Borgmann, 22. October 2013, CLIC/CTF3 Exp. Verification meeting"

Electro Optical Sampling

A laser pulse (top trace) is visible 420ns after the trigger signal (RF), bottom trace. Evidence for a depolarisation induced by the E-O crystal

Short bunches no longer achieved

- Despite the phase shifter for setting the first LIL structure in velocity bunching, bunch length is always longer than 15 ps FWHM
- Before phase shifter installation, 3.3 ps bunch length was measured with the deflecting cavity.
- To be solved urgently (particles tracking model, RF pulse compression phase...)

Cavity BPMs

- BPM required to measure orbit with 50 nm and 50 ns resolutions.
- 15 GHz stainless steel prototype cavity BPM installed in CALIFES.
- Two cavities: Position (dipole) and reference (monopole).
- Beam tests last spring.
- No motor control to vary beam position, used corrector magnets.

See S. Mazzoni talk "Beam instrumentation developments at CTF3", This WS, Tues 17:30

Other diagnostic tests in preparation

Diamond detector

optics

F. Burkart, O. Stein (TE-MPE-PE) E. Nebot Del Busto (BE-BI-BL)

Very low and well calibrated bunch charge requested $(10^5 e^-)$

Cherenkov crystals for spectrometer

2014

Coherence length of ODR light

CALIFES beam time use in 2013

Califes Beam Time (days)

Installation of the CLIC module

Preparation work has started in CLEX

A shelter on the car park to host the

new equipments

A trench cut for the cables

External wall drilled according to RP requirements

CLIC Workshop 3-7 January 2014

Beam dynamic study with the CLIC module

- 2 additional quads required between the PETS tank and the CLIC module
- Powering, sensitivity to errors and uncertainties studied

See J. Esberg talk "Two-beam module layout and optics", This WS, Wed 11:30

Schedule of the installation

Redrawing the line to accommodate the CLIC module		\checkmark
Cables and crate reservations -> new premises		\checkmark
Study of the new beam optics		\checkmark
Drawing and manufacturing of all the elements		\checkmark
Civil Engineering works		\checkmark
Shelter installation and equipment on the car park		
Remove the TBTS tanks		2 nd June
Storage inside CLEX of all reusable equipments		
Remove the girders and the feet	T	
Remove the cables trails and pipes		
Replace the PETS tank		
Install the CLIC module and the new girders with their	equipments	
Vacuum chambers connections and leak tests		
Re-cabling of all the equipments and tests		
Connection to the shelter and tests		15 th Sept
CLIC Workshop 3-7 January 2014 21		

Test planned with the CLIC module

• Module program:

R. Corsini

- Basic RF behaviour (system conditioning, breakdown cross talks...).
- Basic two-beam acceleration (energy gain, setup with beam and phasing...).
- Active alignment and stabilization, in presence of radiation and EM noise.
- Alignment and fiducialization WF monitors vs. BPMs.
- Phase drifts studies (thermal effects, losses...)

Conclusion

- Despite a CALIFES beam interruption since June, the year 2013 has been pretty busy
 - Growing interest from the beam diagnostics community
 - Consolidation of the existing systems
 - Preparation of the CLIC module installation
- The first half of 2014 will be dedicated to complete the essential experiments with the TBTS (WFM, Nominal accelerating gradient...) and to deliver beam for testing the diagnostics already installed.
- The second half will see the challenging CLIC module installation and commissioning.

<u>Specific pre-alignment tests</u> <u>foreseen on the CLEX</u>

- <u>Alignment of the girders (when there is no beam)</u>
 - Control of the metrological data (impact of the transport test)
 - Alignment of the girders (with respect to the existing beam)
 - Absolute measurement (comparison between cWPS sensors and AT401 tracker)
- <u>Test of the Degree of freedoms</u>
 - Actuators displacement (5 D.O.F on 1 mm range)
 - Test of the Articulation Point (transfer of 2 D.O.F)
- Validation of equipment performance in radiation and high EMC noise
- Pre-alignment versus beam alignment
 - Follow up of the data
 - Comparison between sensors alignment and beam data

H. Mainaud Durand