February 5, 2014 CLIC Workshop 2014@CERN, Switzerland

Compact short-pulsed X-band linac based neutron source

O<u>M. Uesaka¹</u>, K. Tagi¹, K. Dobashi¹, T. Fujiwara¹ M. Yamamoto² and

H.Harada³ Nuclear Professional School/Dept. Nucl. Eng.&Manage., University of Tokyo, Japan Accuthera Inc., Japan

JAEA, 2-4 Shirane Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan

CONTENTS

- 1. Decommission of Experimental Reactor "YAYOI"
- 2. R&D of X-band electron linacs
- 3. New Accelerator based Neutron Sources
- 4. High Precision Nuclear Data Analysis for Fuel Debris Evaluation

Categorization of Special Nuclear Material

Unirradiated		Category				
		I	Π	III		
Plutonium		2kg or more	Less than 2kg but more than 500g	500g or less but more than 15g		
	Enriched to 20% 235U or more	5kg or more	Less than 5kg but more than 1kg	1kg or less but more than 15g		
U- 235	Enriched to 10% 235U but less than 20% 235U		10kg or more	Less than 10kg but more than 1kg		
	Enriched above natural, but less than 10% 235U			10kg or more		
	U-233	2kg or more	Less than 2kg but more than 500g	500g or less but more than 15g		

Category
Same category as unirradiated
May be reduced by one category level
П

CONTENTS

1. Decommission of Experimental Reactor "YAYOI"

2. R&D of X-band electron linacs

- 3. New Accelerator based Neutron Sources
- 4. High Precision Nuclear Data Analysis for Fuel Debris Evaluation

Staged Development of Compact Accelerator at University of Tokyo

Picosecond Time-resolved Linac-Laser Synchronization System for Radiation Chemistry

Compact/Portable X-band(9.3,11.424GHz) Linac X-ray Sources for Medicine and NDT

Cavity design of accelerating tube

Cut view of the Acc.tube with electric field (SUPERFISH calculation data)

Beam current measurement

(Gun HV: 20 kW, RF power: 218 kW)

Result of energy spectrum measurement

Equivalent circuit analysis & Calculation result

3. Transient analysis

Beam oscillation is found in the equivalent circuit analysis

Feature of side couple cavity

Advantage(compare with APS-cavity)

- High shunt impedance
- Can change easily the electric field distribution

Drawback (compare with APS-cavity)

• 3D structure

Equivalent circuit analysis (side couple cavity)

In the cavity, the stored energy is in a steady state. Beam current does not oscillate.

First On-site Transmission Test

Nitric Acid Distillation Tower

→ First Successful On-site Obervation of the inner holes by 0.95MeV X-band linac X-ray source.

Transmission inspection in situ for bridges by portable 3.95MeV X-band linac X-ray source

"1h measurement time by conventional 300keV X-ray source became 1s" at University of Tokyo

	Perkin Elmer	
	Scintillator + photodiode	
Total pixel	1024 × 1024	
Pitch	200µm 400µm with 2x2 Binning	LO Alta
Total area	204.8 x 204.8 mm ²	Parkin Elmar
Scintillator	Gd ₂ O ₂ S:Tb	XRD-0820
Capable	20 keV – 15MeV	

	接直 任悚
RF加速空洞共振周波数	9.3 [GHz] ±25 [MHz]
加速管全長	50 [cm] 以下
X線発生強度	2,000 [mGy/min]以上 at 1 [m]
RF発生源	9.3[GHz]マグネトロン パルス幅4[µs] 繰返数200[PPS]
電子銃出力電流	パルスピーク電流 300 [mA]以上
ターゲット遮蔽体	タングステン合金材
パルス出力	出力 3,000 [kW] 以上
出力方式	コンデンサ充電スイッチング方式
X線ヘッドユニット重量	62kg
コリメータ重量	80kg
高周波源ユニット重量	62kg
HVPS,制御ユニット重量	116kg
加速	「器パラメータ
ビーム電流	95 mA 以上
入力RF電力	920 kW
加速管方式	Side coupled Structure
電子ビーム収束方式	RF集束方式
加速セル数	Half 1+full 20

3%

0.23 µsec

110-130 MΩ/m (レギュラ一部)

20 kV

三極管

セル間カップリング

フィリングタイム

シャントインピーダンス

電子銃電圧

電子銃方式

40cm橋桁サンプル

Measurement time: 5s at 50Hz (about 1s at 200Hz)

φ12mmワイヤ中3mmのダメージ

Repetition rate: 50Hz200Hz Current: 90mA(100mA) ON AIR by NHK on April 19 by World Business Satellite on Sep.18 by TBS Morning News in Feb.

measurement time: 5s

X-ray Micro-beam Pinpoint 4-dimensional Therapy System

Robot system Real Time Dynamic Tracking

Compact X-band(9.3GHz) linac (50cm, 6MeV)

Conventional

X-ray Micro-beam (1mm)

ACCUTHERA

On-site Inspection of Reinforced Concrete Pier of Chemical Plants on Jan.8,9,10, 2014

CONTENTS

- 1. Decommission of Experimental Reactor "YAYOI"
- 2. R&D of X-band electron linacs
- 3. New Accelerator based Neutron Sources
- 4. High Precision Nuclear Data Analysis for Fuel Debris Evaluation

Acceleration up to 27 MeV with 22 mA in 2009

Thermionic RF Gun for Multi-bunch Low Emittance Electron Beams

Replacement to electron gun (20keV) and buncher (2/3 π mode) for

Property of buncher reliable high beam power

Cell Number	30
Tube Length	0.26 m
Q ₀	6000
Shunt impedance	85 MΩ/m
Group velocity	%
Decay constant	0.5 Naper/m

Property of RF source

Pulse width	30
Power in buncher	6 MW
Power in accelerator tube	35 MW

- Combination of 20 keV thermal electron gun and 5 MeV accelerator
- Peak Beam current: 250mA (Beamenergy: 30MeV • Pulse width: 1µsec)
- Beam Power: 0.375kW (50pps)

Property of accelerator tube

	Cell Number				60			
	Tube Length Q ₀				0.524 m 6593			
	Shunt i	impeda	ance		95.6 MΩ/m			
	Group	velocit	.y		3.97 %			
	Decay	consta	nt		0.478 Naper/m			
	Beam Energy [MeV]		00 2C Bean	00 300 n Current IL I		Linac Fegular Duncher		

Design of target and moderator for neutrons

- Neutron generation •
 - Photoneutron effect
 - Tungsten as target material
- **Compact Moderator** ٠
 - To make pulse width short for measuring high energy and to make flight path short for brief measurement
- Shielding •
 - Neutron ... PF with 5% Boron

Moderator

2.0cm

Neutron beam

Photon...Lead

2.6cm

1.0cm

Spectrum and pulse shape of neutrons

Beam Power	375 W
Target intensity	1.3 × 10 ¹¹ n/s
Pulse width behind moderator (10 – 100 keV neutron)	6.66 ns
Neutron flux at measurement point (5m TOF)	1.1 × 10 ³ n/cm ² /s

Ce ³⁺:LiCaAlF₆

Characteristics

Existing X-band 30 MeV electron linac will be moved for neutron source More than 10 m TOF planning area 5 m TOF planning area More than 40 m TOF Measuring Holes planning area Reflector - F ore Asseh n and Irradiation Ho USub Pile **(6)**Flux Measuring Holes 30 MeV X-band Linac Experimental Tunnel 70 cm accelerator Klystron and power tube ource are se around the reactor 20 keV electorn gun + 5 MeV Peak Beam current: 250mA buncher+30 MeV/structure + Neutron target (Beam energy: 30MeV • Pulse width: 1µsec) Moderato 2.6cm Beam Power: 0.375kW (50pps) V targe Φ1 0cm 30 MeV (S-band 30MeV⇒1kW(Hokkaido Univ.)) Electron

 $\Phi = 0.2 \text{ cm}$

Experimental configuration in Phase I

CONTENTS

- 1. Decommission of Experimental Reactor "YAYOI"
- 2. R&D of X-band electron linacs
- 3. New Accelerator based Neutron Sources
- 4. High Precision Nuclear Data Analysis for Fuel Debris Evaluation

- By NRTA, 3-7 kg of small sized MF will be measured within 20 min. (The 3-7 kg: a MF area of 300-700 cm² and a thickness of 10 g/cm²).
- By NRCA, 30 g of MF including 10⁹ Bq (mainly ¹³⁷Cs) will be measured within 1 hour for each beam line.

TOF Measurement by Small Pulse Neutron Source Hideo Harada (JAEA)

Hideo Harada (JAEA)

Typical NRTA Data of Nuclear Materials

Behrens et al., Nucl. Techn. 67 (1984) 162

Plan of S-band 50 kW Linac System in the 2nd Term

Beam energy Beam current Pulse width Repetition Beam power Frequency Tube Length 35 MeV0-324 mA (continuously variable)Klystron0.1-20 μsec (variable)Type0-250 (continuously variable)Peak40 kW (Generally) 56 kW (Max)Pulse2856 MHz (S-band)Repe1.9 m (traveling-wave type)

Type Peak Power Pulse width Repetition

Toshiba E3783 4.5 MW 20 μsec 250 pps

Beam	Power	Rep. Rate	RF Power	Aux.	Cooling	g Total	
	[kW]	[pps]	[kW]	[kW]	[kW]	[kW]↓	
:							======‡
	1	4	4	20	24	48⊷	
	10	44	40	20	60	120↓	
	40	178	160	20	180	360↓	
	56	250	225	20	245	490↓	

Summary

- Decommissioning project of research reactor "Yayoi" of Univ. Tokyo is under way.
- We are developing X-band 30 MeV electron linac neutron source and TOF measurement system and to start the experiment this summer. They are going to be installed in the "Yayoi" room.
- Electron injector of X-band 30 MeV linac is revised for large current and higher stability.
- Application of the system is to measure the nuclear data at first. We plan to get more accurate nuclear data for analysis of the fuel debris at Fukushima (F-1), nuclear transformation at ADS and design of new reactors in future.
- Both S-band and X-band linacs are expected to be short-pulsed (1ns-1µs) neutron source for the nuclear data study.

Thank you for your attention.