

detector R&D challenges for energy frontier physics

🗼 Lucie Linssen, CERN

Outline

- Detector requirements at hadron and lepton colliders
- Challenges/technologies in vertex/tracking detectors
- Challenges/technologies in calorimetry
- Possible common development areas
- Outlook

In ~20 minutes:

Impossible to pay justice to the broad spectrum of detector R&D; Impossible, also, to cover pp en e+e- options in a balanced way; My apologies

Sources

Material used for this talk was taken from:

ECFA High Luminosity LHC experiments workshop, Aix-les-Bains, 2013 http://indico.cern.ch/conferenceDisplay.py?confld=252045

FHC Hadron Collider physics and experiments, indico https://indico.cern.ch/categoryDisplay.py?categId=5258 In particular detector talks by D. Fournier and W. Riegler

LCWS13, linear collider workshop, Tokyo, 2013 http://www.icepp.s.u-tokyo.ac.jp/lcws13/

CLIC CDR (vol 2), Physics and Detectors at CLIC, CERN-2012-003, <u>arXiv:1202.5940</u>

CLIC CDR (vol 3), The CLIC Programme: towards a staged e⁺e⁻ Linear Collider exploring the Terascale, CERN-2012-005, <u>http://arxiv.org/abs/1209.2543</u>

With apologies for not having asked individual permissions

hadron vs. lepton colliders

p-p collisions	e ⁺ e ⁻ collisions
 Proton is compound object → Initial state not known event-by-event → Limits achievable precision 	 e⁺/e⁻ are point-like → Initial state well defined (Vs / polarization) → High-precision measurements
Circular colliders feasible	Linear Colliders (avoid synchrotron rad.)
 High rates of QCD backgrounds → Complex triggering schemes → High levels of radiation 	 Cleaner experimental environment → trigger-less readout → Low radiation levels
High cross-sections for colored-states	Superior sensitivity for electro-weak states

CLIC physics aims => detector needs

+ requirements from CLIC beam structure and beam-induced background

CLIC machine environment

	CLIC at 3 TeV	
L (cm ⁻² s ⁻¹)	5.9×10 ³⁴	
BX separation	0.5 ns	Crives timing
#BX / train	312	requirements
Train duration (ns)	156	for CLIC detector
Rep. rate	50 Hz	
σ _x / σ _y (nm)	≈ 45 / 1	very small beam size
σ _z (μm)	44	very sman beam size

Beam related background:

Small beam profile at IP leads very high E-field

Beamstrahlung Pair-background

- High occupancies
- γγ to hadrons

CLIC conditions => impact on detector

CLIC conditions => impact on detector technologies:

- High tracker occupancies => need small cell sizes (beyond what is needed for resolution)
 - Small vertex pixels
 - Large pixels in intermediate regions
 - Limited strip length in tracker
- Bkg energy => need high-granularity calorimetry
- Bkg suppression => overall need for precise hit timing
 - ~10 ns hit time-stamping in tracking
 - 1 ns accuracy for calorimeter hits
- Low duty cycle
 - Triggerless readout
 - Allows for power pulsing
 - => less mass and high precision in tracking
 - => high density for calorimetry

Challenges in LC detector R&D

Combined requirements lead to the following challenges:

Vertex and tracker

Very high granularity Dense integration of functionalities Including ~10 ns time-stamping Super-light materials Low-power design + power pulsing Air cooling

ultra – light

Calorimetry

Fine segmentation in R, phi, Z Time resolution ~1 ns Ultra – compact active layers Pushing integration to limits Power pulsing

ultra – heavy and compact

detector requirements HL-LHC

Maintain performance at full sensitivity for discovery and precision measurements at low p_{τ} , under severe pile-up conditions

Pileup

<PU> ≈ 50 events per crossing by LS2 <PU> ≈ 60 by LS3 <PU> up to 140 for lumi-leveling at 5x10³⁴cm⁻²s⁻¹ at HL-LHC (accounting for uncertainty and bunch-to-bunch variations)

Radiation damage

Performance longevity after 300 fb⁻¹ Replace elements with limited lifetime

Extend performance to larger $\boldsymbol{\eta}$

Profit from detector technology advances

Enhance trigger + DAQ

comparison CLIC ⇔ LHC detector

In a nutshell:

CLIC detector:

•High precision:

Jet energy resolution

=> fine-grained calorimetry

Momentum resolution

Impact parameter resolution

•Overlapping beam-induced background:

- •High background rates, medium energies
- High occupancies
- •Cannot use vertex separation
- •Need very precise timing (1ns, 10ns)

•"No" issue of radiation damage (10⁻⁴ LHC)

- •Except small forward calorimeters
- •Beam crossings "sporadic"
- •No trigger, read-out of full 156 ns train

LHC detector:

•Medium-high precision:

- •Very precise ECAL (CMS)
- •Very precise muon tracking (ATLAS)

•Overlapping minimum-bias events:

- High background rates, high energiesHigh occupancies
- •Can use vertex separation in z
- •Need precise time-stamping (25 ns)

•Severe challenge of radiation damage

Continuous beam crossings

Trigger has to achieve huge data reduction

from HL-LHC to FHC

Some very (!) first assessments about extrapolation from LHC to FHC

What are the changes the detectors have to cope with ?

Collisions with larger boost => need more forward coverage

- Longer barrel ?
- Increased forward η -coverage (jet coverage up to η =6?)

Cope with higher particle/jet energies for interesting physics

- Larger tracker (muon system) radius and/or higher B-field
- Deeper calorimetry for less leakage (~2 Λ_i extra)
- (Muon energy loss)

Issues of background suppression and radiation levels 14 TeV => 100 TeV:

- 25% increase of pp cross section
- Charged multiplicity will go up by ~50%
- Average p_t will go up by ~1/3 (from 0.6 GeV to 0.8 GeV)
- One can expect factor 2 increase in fluence and dose levels at first pixel layer

first thoughts on FHC detectors

↑ a first iteration on dimensions:

- To achieve physics performance for high-E objects
- Increased forward coverage up to ~η=6
- without extrapolation on detector technology/precision capabilities

Room for smart ideas and use of new technologies !

Lucie Linssen, detector R&D talk, CLIC workshop, 3/2/2014

Vertex/tracker technologies

clc

Overall challenges:

More accuracy:

- Small cell sizes
- Low-mass
 - => Low power
 - => Interconnects: high-density + vertical

Integrated designs, including:

- Low-mass supports
- Cooling
- Power delivery
- Signal transmission

Manufacturability in large areas at low cost

Move away from most expensive elements (e.g. silicon sensors, bump-bonding)

Radiation hardness (for pp case)

A few technology examples on the next slides

Vertex detector: monolithic CMOS (ILC)

Monolithic sensor, CMOS process

high-resistivity in thin epitaxial layer

- Fast signal component (drift)
- Electronics integrated in pixel
- Rolling shutter read-out (coarse timing)
- Analog or digital readout possible

2 types of sensors for inner and outer layers

MIMOSA-30 : Dual sided readout out

• 1 side for spatial resolution (16x16 μm pixel),

1 side for timing (~10μs, 16x64 μm pixel)
 MIMOSA-31 : Larger pixel for reduced power consumption (35x35 μm)

Monolithic pixels => ALICE ITS

From ILC designs + RHIC detector to ALICE upgrade for 2018

For CLIC and FHC would need increased rate and increased radiation hardness

Through Silicon Vias (TSV)

Through Silicon Via (TSV)

Vertical electrical connection passing through Si wafer

- eliminates need for wirebonds
- 4-side buttable chip/sensor assemblies
- large active surfaces => less material
 - 240 µm TSV diameter
 - \bullet wafers thinned to 120 μm
 - \bullet 5 μm copper layer for TSV

E.g. Medipix TSV project (ALICE / CLIC / ACEOLE / AIDA) with CEA-Leti

- 130 nm IBM Medipix(RX) wafers, via-last process
- successful completion of first phase: *demonstrate feasibility*
- on-going second phase: *demonstrate good yield*
- Next phase: with Timepix3 and thin sensors

First Medipix3 Image taken with TSV assembly

CLIC vertex detector

- ~25×25 μm pixel size => ~2 Giga-pixels
- 0.2% X₀ material per layer <= very thin !
 - Very thin materials/sensors
 - Low-power design, power pulsing, air cooling
 - Aim: 50 mW/cm²
- Time stamping 10 ns
- Radiation level $<10^{11} n_{eq} \text{cm}^{-2} \text{year}^{-1} \le 10^4 \text{ lower than LHC}$

CLIC vertex detector R&D (1)

clc

Hybrid approach pursued: (<= other options possible)

- Thin (~50 μm) silicon sensors
- Thinned high-density ASIC
 - R&D within Medipix/Timepix effort
- Low-mass interconnect
 - Micro-bump-bonding (Cu-pillar option)
 - Through-Silicon-Vias (R&D with CEA-Leti)
- Power pulsing
- Air cooling

CLIC vertex detector R&D (2)

further ongoing R&D activities

Hybrid detector with HV-CMOS

HV-CMOS MAPS:

- 180 nm High Voltage process
- $V_{\text{bias}} \sim 100 \text{ V}$, 10-20 μm depletion layer
- Integrated sensors, fast signal collection

Hybrid option:

Capacitive Coupled Pixel Detector (CCPD)

- HV CMOs chip as integrated sensor+ amplifier
- Capacitive coupling to readout chip through layer of glue => no bump bonding
- Ongoing R&D with FEI4, Timepix, CLICpix

HL-LHC tracker upgrades

clc

Upgrades	Area	Baseline sensor type
ALICE ITS	12 m ²	CMOS
LHCb VELO	0.15 m ²	tbd
LHCb UT	5 m ²	n-in-p
ATLAS Strips	193 m ²	n-in-p
CMS Strips	218 m ²	n-in-p
ATLAS Pixels	8.2 m ²	tbd
CMS Pixels	4.6 m ²	tbd

With smaller granularity and less mass

Calorimeter technologies

Overall challenges:

More accuracy:

- Shower reconstruction of particles within the jet
- Need hit-time accuracy
 - => ~1 ns for CLIC
 - => ~25 ns for LHC (ideally <200 ps for HL-LHC and FHC)

Integrated designs, involving:

- High density => little space for active layers
 - => ~2 mm in linear collider ECAL
 - => <7 mm in linear collider HCAL
- High channel count
- Low-power design
- Minimal space for cooling

Manufacturability in large areas at low cost

Radiation hardness (for pp case)

A few technology examples in the next slides

PFA calorimetry at CLIC

ECAL

Si or Scint. (active) + Tungsten (absorber) cell sizes 13 mm² or 25 mm² **30** layers in depth

HCAL

Several technology options: scint. + gas **Tungsten (barrel), steel (endcap)** cell sizes 9 cm² (analog) or 1 cm² (digital) **60-75** layers in depth (HCAL depth ~7 Λ_i)

ECAL: Si-W (CALICE)

30 layers in depth cell size 5.5x5.5mm² ~100 M ECAL channels at ILC (ILD) ~2000 m² silicon Successful beam tests

Currently: technological Si-ECAL prototype

Real-scale detector integration model

ECAL: Scint-ECAL (CALICE)

A-HCAL (CALICE)

AHCAL 2nd generation fully integrated prototype undergoing beam tests

3x3 cm² scintillator tiles with SiPMs Integrated electronics (SPIROC chip) LED SiPM calibration Power-pulsing 220 cm long modules Active layer thickness of 5.4 mm

digital DHCAL glass RPC's (CALICE)

Steel DHCAL Tungsten DHCAL 500'000 readout channels

54 glass RPC chambers, ~1m² each PAD size 1×1 cm² Digital readout (1 threshold) Fully integrated electronics Total 500'000 readout channels

Ongoing R&D with lower-resistivity glass for better rate dependence

Other large-scale protoypes:

- 1m³ semi-digital HCAL with glass RPC's
- 4 large (~1m²) micromegas readout planes

CLIC forward calorimetry

2 forward calorimeters: Lumical + Beamcal

Tungsten thickness 1 X₀, 40 layers BeamCal sensors GaAs, 500 mm thick LumiCal sensors silicon, 320 mm thick Readout at the outer radius BeamCal angular coverage 10 - 40 mrad LumiCal coverage 38 – 110 mrad doses up to 1 Mgy neutron fluxes of up to 10¹⁴ per year

Very compact !

Active layer gap is 0.8 mm Moliere radius 11 mm

> high-radiation performance => collaboration with LHC beam monitors

HL-LHC CMS end cap calorimetry

Potential replacement of the CMS end-cap calorimetry (EE+HE)

Main motivation:

- Radiation resistance
- Extension of the η-coverage (for jets from VBF)

Shashlik concept

Several detector options

They represent a nice illustration of recent technology advances

- Shashlik design
 - Radiation-hard scintillators (e.g. crystal scintillator for EE)
- **Dual fiber read-out**: scintillation & Cerenkov following work of DREAM/RD52
 - using doped/crystal fibers => allows e/h correction
- Fine-grained Particle Flow Calorimeter following work of CALICE
 - active layers GEM/Micromegas or Silicon => detailed jet reconstruction

Possible common pp/e⁺e⁻ development areas

Non-exhaustive, to be completed

- Vertex+tracking detector technology
 - R&D in integrated hybrid detectors (including developments with HV-CMOS)
 - Advanced radiation-hard microelectronics
 - Interconnect technologies
 - Low-mass engineering
 - Low-mass detector cooling (e.g. microcooling options)
 - Detector powering
 - New low-mass solutions with small strips / large pixels
- Fine-grained calorimetry
 - Optimisation of jet energy resolution + bkg suppression with PFA
 - Compact, large area detectors
- Overall detector engineering aspects and large+strong detector magnets
- Simulation tools and methods
 - Flexible detector geometry descriptions for simulations in detector optimisation phase
 - PFA-like event reconstruction tools
 - Jet clustering

Summary/outlook

Many exciting detector R&D projects for high-energy e+e- and pp !

Collaborative efforts, creativity, perseverance and new technologies help to overcome challenges

When comparing e+e- with pp: many challenges are common, others diverge

In most cases, basic technology advances can be carried out in common

Implementations are nearly always application-specific

thank you

SPARE SLIDES

Country	Partner	Representative in the IB	
Australia	Australian Collaboration for Accelerator Science (ACAS)	M. Boland	
Belarus	NC PHEP, Belarusian State University, Minsk	K. Afanaciev	
Chile	The Pontificia Universidad Católica de Chile, Santiago	M.A. Diaz Gutierrez	
Czech Republic	Institute of Physics of the Academy of Sciences of the Czech Republic, Prague	T. Lastovicka	
Denmark	Department of Physics and Astronomy, Aarhus University	U. Uggerhoj	
France	Laboratoire d'Annecy-le-Vieux de Physique des Particules (LAPP), Annecy	Y. Karyotakis	
Germany	MPI Munich	F. Simon	
Israel	Tel Aviv University	A. Levy	
Norway	University of Bergen	G. Eigen	
Poland Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Cracow		M. Idzik	
Poland	The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow	L. Zawiejski	
Romania	Institute of Space Science	T. Preda	
Serbia	Vinca Institute for Nuclear Sciences, Belgrade	I. Bozovic- Jelisavcic	
Spain	Spanish Network for Future Linear Colliders	A. Ruiz	
Switzerland	CERN	K. Elsener	
United Kingdom	The School of Physics and Astronomy, University of Birmingham	N. Watson	
United Kingdom	University of Cambridge	M. Thomson	
United Kingdom	University of Glasgow	A. Robson	
United Kingdom	University of Oxford	Ph. Burrows	
USA	Argonne National Laboratory, High Energy Physics Division	H. Weerts	
USA	University of Michigan, Physics Department	J. Wells	

CLIC detector and physics study

Light-weight cooperation structure No engagements, on best-effort basis With strong collaborative links to ILC

http://lcd.web.cern.ch/LCD/Home/MoC.html

CLICdp: 21 institutes

ector R&D talk, CLIC workshop, 3/2/2014

pp table of comparison

Parameter	LHC	HL-	LHC	HE-LHC	VHE-LHC	
c.m. energy [TeV]		14		33	100	
circumference C [km]			26.7		80	
dipole field [T]		8.33		20	20	
dipole coil aperture [mm]		56		40	≤ 40	
beam half aperture [cm]		2.2 (x), 1.8	(y)	1.3	≤ 1.3	
injection energy [TeV]		0.45		>1.0	>30	
no. of bunches	2808	2808	1404	2808	8420	
bunch population [10 ¹¹]	1.125	2.2	3.5	0.81	0.80	
init. transv. norm. emit. $[\mu m]$	3.73,	2.5	3.0	1.07	1.70	
initial longitudinal emit. [eVs]		2.5		3.48	13.6	
no. IPs contributing to tune shift	3	2	2	2	2	
max. total beam-beam tune shift	0.01	0.021	0.028	0.01	0.01	
beam circulating current [A]	0.584	1.12	0.089	0.412	0.401	
RF voltage [MV]		16		16	22	
rms bunch length [cm]		7.55		7.55	7.55	
IP beta function [m]	0.55	0.73 -	$\rightarrow 0.15$	0.3	0.9	
init. rms IP spot size $[\mu m]$	16.7	15.6 ightarrow 7.1	24.8 ightarrow 7.8	4.3	5.3	
		1				Ave
Stored energy [MJ]	362	69	94	601	4573	pile
Peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	1	(7.	.4)	5	5	

Assume: Luminosity 5x10³⁴ in 25ns or 5ns bunch spacing. Integrate 3000fb-1.

CLIC_ILD and CLIC_SiD

Two general-purpose CLIC detector concepts Based on initial ILC concepts (ILD and SiD) Optimised and adapted to CLIC conditions

CLIC_ILD

Lucie Linssen, detector R&D talk, CLIC workshop, 3/2/2014

36

Vertex detectors

Categories of candidate technologies

	Monolytic CMOS	(3D) integrated	Hybrid pixel
Examples	DEPFET, FPCCD, MAPS, HV-CMOS	SOI MIT-LL, Tezzaron, Ziptronix	CLICpix (TimePix3, Smallpix)
Technology	Specialised HEP processes, r/o and sensors integrated	Customized niche industry Processes with focus on Interconnectivity	Industry standard ASIC processes; HEP-specific high-resistivity sensors
Depletion layer	Partial	Partial or full	Full => large fast signals
Granularity	Down to 5 μm pixel size	Down to 5 μm pixel size	25 μm pixel size
Thickness	~50 μm total thickness achievable	~50 μm total thickness achievable	~50 μm sensor + ~50 μm r/o

Vertex detectors

Categories of candidate technologies

		Monolytic CMOS	(3D) integrated	Hybrid pixel
	Examples	DEPFET, FPCCD, MAPS, HV-CMOS	SOI MIT-LL, Tezzaron, Ziptronix	CLICpix (TimePix3, Smallpix)
	Technology	Specialised HEP processes, r/o and	Customized niche industry	Industry standard ASIC processes;
Smaller pixels Thinner detectors		4		
T	hinner detectors		H	igh level of pixel functionality Fast time-stamping

CLIC vertex R&D: power pulsing

Power-delivery + pulsing

- low-mass Al-Kapton cables
- power pulsing with local energy storage and voltage regulation
- prototype for analog powering of CLICpix ladder:
 - I_{ladder}~20-60 mA; 10 mW/cm²
 - voltage stability: ∆V~10 mV
 - 0.064% X₀ material contrib.
 - can be reduced to ~0.03% X₀

Linear collider, Si-tracker R&D

SiD tracker module "chip on sensor"

Silicon tracker for the Linear Collider

=> Aim for ~1% X0 per layer

 \Rightarrow Only limited R&D ongoing

- 1024-channel KPIX chip
- Sensor with double metal-layer routing
- Connectivity via Kapton pig-tail cable

calorimetry and PFA

Jet energy resolution and background rejection drive the overall detector design

=> => fine-grained calorimetry + Particle Flow Analysis (PFA)

calorimetry and PFA

time development in hadronic showers

- In steel 90% of the energy is recorded within 6 ns (corrected for time-of-flight).
- In tungsten this takes almost ~100 ns. (depends on active material)
 - Response is slower due to the much larger component of the energy in slow neutrons.
- Need to integrate over ~100 ns in reconstruction, keeping out pile-up hits...

CALICO Analog HCAL: scintillator/tungsten

HCAL tests with 10 mm thick **Tungsten absorber** plates, Tests in 2010+2011 with scintillator active layers, 3×3 cm² cells => analog readout visible Energy longitudinal shower protons profile, pions 250 SdIW] ^{sin} 200 Energy per layer [MIPs CALICE Preliminary CALICE Preliminary 4 GeV π^+ Data QGSP_BERT_HP 150 **CERN SPS 2011** Proton Data QGSP BERT HP 100 good agreement with Geant4 FTFP BERT Simulation/Data Simulation/Data 1.04 1.02 0.98 0.9 0.96 0.8 6 8 20 30 10 E_{available} [GeV] AHCAL layer number

HCAL: SDHCAL (CALICE)

Steel SDHCAL 500'000 readout channels

~50 glass RPC chambers, 1m² each
PAD size 1×1 cm²
Semi-digital readout (3 thresholds)
200 ns time-slicing
Fully integrated electronics

With power-pulsing ! Separate power-pulsing tests in 3T magnet => Stable signal response

Full SDHCAL stack **successfully tested**: 2012 (2011) CERN - ongoing **Steel** absorber

Calorimetry: Micromegas / GEM

Micromegas

Two 1 m² chambers, multi-threshold readout Successfully tested within SDHCAL stack, 2012

32x48 pads of 1 cm² on back side

After successful tests with 30×30 cm **GEM chambers**, development towards of 1m² plane has started.

background suppression at CLIC

- Then apply cluster-based timing cuts
 - Cuts depend on particle-type, p_{T} and detector region
 - Allows to protect high- p_T physics objects

+

- Use well-adapted jet clustering algorithms
 - Making use of LHC experience (FastJet)

tCluster

time window / time resolution

The event reconstruction software uses:SubdetectorReconstruction windowbit resolutionECAL10 ns1 nsHCAL Endcaps10 ns1 nsHCAL Barrel100 ns1 ns

K t₀ physics event (offline)

Translates in precise **timing requirements** of the sub-detectors

PFO-based timing cuts

Region	p _t range	Time cut					
Photons							
central	$0.75 { m ~GeV} \le p_t < 4.0 { m ~GeV}$	t < 2.0 nsec					
$(\cos\theta \le 0.975)$	$0~{ m GeV} \le p_t < 0.75~{ m GeV}$	t < 1.0 nsec					
forward	$0.75 { m ~GeV} \le p_t < 4.0 { m ~GeV}$	t < 2.0 nsec					
$(\cos \theta > 0.975)$	$0~{ m GeV} \le p_t < 0.75~{ m GeV}$	t < 1.0 nsec					
Neutral hadrons							
central	$0.75~{ m GeV} \le p_t < 8.0~{ m GeV}$	<i>t</i> < 2.5 nsec					
$(\cos\theta \le 0.975)$	$0~{ m GeV} \le p_t < 0.75~{ m GeV}$	t < 1.5 nsec					
forward	$0.75~{ m GeV} \le p_t < 8.0~{ m GeV}$	t < 2.0 nsec					
$(\cos \theta > 0.975)$	$0~{ m GeV} \le p_t < 0.75~{ m GeV}$	t < 1.0 nsec					
Charged PFOs							
all	$0.75 { m ~GeV} \le p_t < 4.0 { m ~GeV}$	t < 3.0 nsec					
	$0~{ m GeV} \le p_t < 0.75~{ m GeV}$	t < 1.5 nsec					

Software compensation

dc

High granularity of the calorimeter can be used to distinguish between electromagnetic (dense) and hadronic (less dense) shower components

CALICE Steel-AHCAL data

Improved resolution (20% better) and linearity

details of forward detector region

CLIC strategy and objectives

2013-18 Development Phase

Develop a Project Plan for a staged implementation in agreement with LHC findings; further technical developments with industry, performance studies for accelerator parts and systems, as well as for detectors.

On the basis of LHC data and Project Plans (for CLIC and other potential projects), take decisions about next project(s) at the Energy Frontier.

4-5 year Preparation Phase

Finalise implementation parameters, Drive Beam Facility and other system verifications, site authorisation and preparation for industrial procurement.

Prepare detailed Technical Proposals for the detector-systems.

2024-25 Construction Start

Ready for full construction and main tunnel excavation.

Construction Phase

Stage 1 construction of CLIC, in parallel with detector construction.

Preparation for implementation of further stages.

Commissioning Becoming ready for datataking as the LHC programme reaches completion.