

Vertex detector cooling and mechanical supports

04/02/2014

François-Xavier Nuiry Wolfgang Klempt Fernando Duarte Ramos Miguel Angel Villarejo

Contents

- 1. Objectives of the study
- 2. Set up description & commissioning
- 3. Vertex detector structure
 → Developments, Mechanical tests
 and Simulations
- 4. Thermal tests with full sandwich stave prototype

1. OBJECTIVES	2. SET UP DESCRIPTION	3. STAVE STRUCTURES	4. THERMAL TESTS	5. CONCLUSION

Objectives of the study

CLIC VERTEX CHALLENGES →Low material budget:
(0.18% X/X0 per layer in VXB of which 0.11% is silicon)
→Air cooling:

Room temperature operation;

~470 W Heat load to extract;

→ High dimensional stability

 \rightarrow Assembly and cabling integration

SHORT TERM OBJECTIVES:

→ Develop and characterize low-mass structures (STAVES): ~0.05% X/X0

 → Evaluate forced convection air cooling of the structure Nominal heat dissipation: 50mW/cm², ΔT measurements
 → Measure air-flow induced vibrations on the structure

 \rightarrow Validation of simulations (thermal and mechanical)

1. OBJECTIVES	2. SET UP DESCRIPTION	3. STAVE STRUCTURES	4. THERMAL TESTS	5. CONCLUSION

Set up Description

\rightarrow Construction of thermo-mechanical test bench for Vertex staves

→System adaptable for the 3 Barrel layers:
 -Movable walls
 -Air flow tuning
 -Several stave orientations

-Suitable for various stave geometries

1. OBJECTIVES	2. SET UP DESCRIPTION	3. STAVE STRUCTURES	4. THERMAL TESTS	5. CONCLUSION
	Set up description			

Set up Description – Read out

NI cDAQ-9188

ightarrow Read out system and equipment

Schmidt SS 20.400

anemometer (x4)

IST PT1000 (x6)

TOP

10,25

LabVIEW interface

Micro-Epsilon optoNCDTLL 2300

Set up Description – Read out

→ Read out system and equipment (From PH/DT)

Thermal camera FLIR A655 sc

- -Resolution:
- 640*480 pixels -Images frequency: 50Hz
- -Sensibility:
- -External trigger

< 50mK

Interface

	PH-D
\mathcal{A}	Detec

1. OBJECTIVES	2. SET UP DESCRIPTION	3. STAVE STRUCTURES	4. THERMAL TESTS	5. CONCLUSION
	Read out			

Laboratory

Your are welcome in 153-R-040 !

1. OBJECTIVES	2. SET UP DESCRIPTION	3. STAVE STRUCTURES	4. THERMAL TESTS	5. CONCLUSION
	Lab			

Implementation and commissioning of a thermo-mechanical set up

 \rightarrow Aeraulic tests:

Study of the air velocity profile

1. OBJECTIVES	2. SET UP DESCRIPTION	3. STAVE STRUCTURES	4. THERMAL TESTS	5. CONCLUSION
	Aeraulic tests			

Implementation and commissioning of a thermo-mechanical set up

 \rightarrow Aeraulic tests:

Study of the air velocity profile

1. OBJECTIVES	2. SET UP DESCRIPTION	3. STAVE STRUCTURES	4. THERMAL TESTS	5. CONCLUSION
	Aeraulic tests			

 \rightarrow Several stave designs have been mechanically tested (1.8mm*26mm*280mm)

1. OBJECTIVES	2. SET UP DESCRIPTION	3. STAVE STRUCTURES	4. THERMAL TESTS	5. CONCLUSION
		Stave design		

 \rightarrow Study and development of manufacturing

- -Mass optimisation
- -Production regularity
- -Materials and assembly process R&D (Core, skin...)

→ Stave Mechanical Characterisation.
 Measure of the Flexural stiffness.
 Span: 180mm.

Stave label #	#1	#2	#3	#5
Material	M55J + Rohacell 51			
Flexural stiffness (N/mm) Measurements	6.95 N/mm	3.3 N/mm	2.96 N/mm	2.23 N/mm
Flexural stiffness (N/mm) FEM Model	6.95 N/mm	-	-	2.30 N/mm
Mass (g) 280mm long	3.74 g	3.08 g	2.74 g	1.76 g
X/X0 %	0.121 %	(0.118 %)	0.068 %	0.051 %

 \rightarrow Full sandwich stave is stiff but out of Radiation length specs.

 \rightarrow Cross bracing staves (60°) fulfil the Radiation length goal. (0.05%).

 \rightarrow No clear stiffness minima are defined yet, vibration tests should be done soon.

1. OBJECTIVES	2. SET UP DESCRIPTION	3. STAVE STRUCTURES	4. THERMAL TESTS	5. CONCLUSION
		Stave stiffness		

→ Stave Mechanical
 Characterisation. Measure of the
 Flexural stiffness. Span: 180mm.

Stave label #	#1	#7	#8	#9	
Material	M55J + Rohacell 51	T800, [0°; 90°; 0°],	T800, [0°; 90°; 0°],	T800, [0°; 90°; 0°],	7
Flexural stiffness (N/mm) Measurements	6.95 N/mm	2.12 N/mm	2.17 N/mm	2.24 N/mm	Should b
Flexural stiffness (N/mm) FEM Model	6.95 N/mm	2.15 N/mm	2.26 N/mm	2.35 N/mm	<u>Improvec</u>
Mass (g) 280mm long	3.74 g	3.17 g	3.45 g	3.50 g	Some rea
X/X0 %	0.121 %	0.104 %	0.112 %	0.113 % -	reduce su

- \rightarrow With a <u>very standard process</u>, the use of thin prepreg reduces by 18% the stave mass.
- \rightarrow Reduction by 70% of the stiffness (<u>Layup not optimised</u>).
- \rightarrow The thin prepreg used for stave 7, 8 and 9 implies the addition of a glue layer.
- \rightarrow Thin Prepreg staves could be lighter with new assembly processes (thin glue layer co-curing): Under study.
- → Stiff and lighter honeycomb will be also prototyped.

1. OBJECTIVES	2. SET UP DESCRIPTION	3. STAVE STRUCTURES	4. THERMAL TESTS	5. CONCLUSION
		Stave stiffness		

Na

\rightarrow Stave Mechanical Characterisation. Evaluation of the **Bending stiffness.**

$f = \frac{1}{44}$	$\frac{F * l^3}{8 * E_s * l} + \frac{F * l}{4 * G * b * l}$	$\frac{1}{1} = \frac{m * l^3}{48 * E * I} - \frac{1}{1}$	$+\frac{m*l}{4*G*b*h}$	E * I	$=\frac{m*l^{3}}{48*(1-\frac{m*l}{4*G*b*h})}$	
Stave label #	#5	#1	#7		#8	#9
Material	M55J + Rohacell 51	M55J + Rohacell 51	T800, [0°; 90°; 0)°],	T800, [0°; 90°; 0°],	T800, [0°; 90°; 0°],
lexural stiffness (N/mm) Measurements	2.23 N/mm	6.95 N/mm	2.12 N/mn	n	2.17 N/mm	2.24 N/mm
Bending stiffness N.mm ²	3.210*10 ⁵ N.mm ²	1.769*10 ⁶ N.mm ²	3.605*10⁵N.m	ım²	3.132*10 ⁵ N.mm ²	3.238*10 ⁵ N.mm ²
ntural frequency <u>estimate</u> (Hz) 80mm long stave clamped on both sides)	157 Hz	314 Hz	152 Hz		140 Hz	142 Hz

- → Vibration tests should tell us soon if such natural frequencies are close to exciting vibration of air.
- → The thin prepreg staves <u>are not optimised</u>. We should theoretically get the stiffness of #1 with the radiation length close to stave #5!

→ Studied scenarios:

Two layers of XN80 thin prepreg (45g/m2)		Two layers of M55J thin prepreg (30g/m2)		
with honeycomb should give:		with honeycomb shou	uld give:	
X/X0 ~ 0.08% EI=	=1.54*10 ⁶ N.mm ²	X/X0~0.058%	EI=7.7*10 ⁵ N.mm ²	

1. OBJECTIVES	2. SET UP DESCRIPTION	3. STAVE STRUCTURES	4. THERMAL TESTS	5. CONCLUSION
		Stave frequencies		

Vertex Detector Structure: Stave Future prototypes

Design and simulation work...then prototyping

→Simulation of *lattice* staves done with a new technique (pre-moulded skins)

→Simulation of filament winding staves

1. OBJECTIVES	2. SET UP DESCRIPTION	3. STAVE STRUCTURES	4. THERMAL TESTS	5. CONCLUSION
		Future staves		

 \rightarrow Manufacturing at CERN & partnership with companies

COMPOSITE DESIGN

Specialists in composite prototyping

Specialists in very thin prepreg production

 \rightarrow Future prototypes done at CERN

1. OBJECTIVES	2. SET UP DESCRIPTION	3. STAVE STRUCTURES	4. THERMAL TESTS	5. CONCLUSION
		Collaboration		

- \rightarrow Simulations are now matching rather well with tests. It implies some tunings
- → Full sandwich staves are the stiffest prototypes
 But they are still too "heavy" (X/X0~0.110%)
 These structures are still studied as they present a good design for material comparison
 Thin prepregs have not yet shown their <u>full potential</u>
- → Cross bracing staves present very low radiation length (0.05%)
 -The manufacturing accuracy of such staves could be improved
 -Their stiffness still needs to be validated through realistic tests
- → Future staves should be considered as superlight structures
 -All new potential materials could be studied
 -New manufacturing techniques are proposed

1. OBJECTIVES	2. SET UP DESCRIPTION	3. STAVE STRUCTURES	4. THERMAL TESTS	5. CONCLUSION
		Summary		

1. OBJECTIVES	2. SET UP DESCRIPTION	3. STAVE STRUCTURES	4. THERMAL TESTS	5. CONCLUSION
			Stave equipment	

Stave cooling tests Scenarios

Channel height [mm]	Stave angle [deg]	Air velocity [m/s]	Power dissipation [mW/cm ²]
17.3	0	3	25
25	45	5	50
56	90	7.5	75
			100

Stave cooling tests Results for 25mm channel

Constant power = 50 mW/cm²

Simulations

4. THERMAL TESTS

5. CONCLUSION

3. STAVE STRUCTURES

2. SET UP DESCRIPTION

1. OBJECTIVES

22

Stave cooling tests - Simulations

25 mm channel; 5 m/s; 50 mW/cm²

Stave cooling tests – Simulations 25mm channel Measurements versus CFD simulations

Constant velocity = 5 m/s

Stave cooling tests – Simulations 25mm channel Measurements versus CFD simulations

Constant power = 50 mW/cm²

Stave cooling tests Summary I

- Test set-up is assembled and producing results
- Thermal measurements have shown so far:
 - Stave angle with respect to flow influences the measured temperatures (lowest values at 90 degrees)
 - Stave angle with respect to flow influences the temperature distribution (more homogeneous at 90 degrees)
 - Temperatures decrease asymptotically for increased air velocities
 - Channel height has a relatively low influence on measured temperatures
- New dummy stave with a Rohacell core will be assembled and tested

1. OBJECTIVES	2. SET UP DESCRIPTION	3. STAVE STRUCTURES	4. THERMAL TESTS	5. CONCLUSION
			Summary	

Stave cooling tests Summary II

- A parametric CFD model of the set-up was created
- For the cases analysed so far, the model shows the same behaviour as the set-up;
- Simulated temperatures are very close to the measured ones;
- The small differences may be partially explained by a non uniform temperature distribution in the heater and a cold spot at the PT1000 locations;

- **Thermographic** measurements are foreseen to check this assumption;
- The next step will be to measure the **vibrations induced** by the air flow.

1. OBJECTIVES	2. SET UP DESCRIPTION	3. STAVE STRUCTURES	4. THERMAL TESTS	5. CONCLUSION

Thank you