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B Energy efficiency contributed 63 exajoules (EJ) (1400 Mtoe) of
avoided energy use in 2010
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CLIC CDR parameters for Scenario A
« optimized for luminosity at 500 GeV »

el

Parameter Symbol  Unit

Centre-of-mass energy VS GeV 500 1400 3000
Repetition frequency Jrep Hz 50 50 50
Number of bunches per train ny, 354 312 312
Bunch separation A, ns 0.5 0.5 0.5
Accelerating gradient G MV/m 30 80/100 100
Total luminosity L 10*em™2s~! 2.3 3.2 5.9
Luminosity above 99% of /s “o.0 10 em—2%s—1 14 1.3 2
Main tunnel length km 13.2 27.2 48.3
Charge per bunch N 10° 6.8 3.7 3.7
Bunch length O- Lm 72 44 44

IP beam size Ox/ Oy nm 200/12.6  =60/1.5 =40/1
Normalised emittance (end of linac) &,/&, nm 2350/20  660/20 660/20
Normalised emittance (IP) £ /& nm 240025 — —
Estimated power consumption P, MW 272 364 589
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y CLIC CDR parameters for Scenario B

7 « lower entry cost »
Parameter Symbol  Unit
Centre-of-mass energy NG GeV 500 1500 3000
Repetition frequency Jrep Hz 50 30 50
Number of bunches per train ny, 312 312 312
Bunch separation A ns 0.5 0.5 0.5
Accelerating gradient G MV/m 100 100 100
Total luminosity z 10*em™2s~! 1.3 3.7 5.9
Luminosity above 99% of /s F001 10 em=2s~1 0.7 1.4 2
Main tunnel length km 11.4 27.2 48.3
Charge per bunch N 10° 3.7 3.7 3.7
Bunch length O- lm 44 44 44
[P beam size Ox / Oy nm 100/2.6 = 60/1.5 =40/1
Normalised emittance (end of linac) &./é&, nm — 660/20 660/20
Normalised emittance Ex/ €y nm 660/25 — —
Estimated power consumption Pl MW 235 364 589
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Fig. 5.2: Integrated luminosity in the scenarios optimised for luminosity in the first energy stage (left)
and optimised for entry costs (right). Years are counted from the start of beam commissioning. These
figures include luminosity ramp-up of four years (5%, 25%, 50%, 75%) in the first stage and two years
(25%, 50%) in subsequent stages.
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_)/ CLIC CDR power consumption by WBS domain

Power consumption of ancillary systems ventilated pro rata and included in numbers by WBS domain

500 GeV A 1.5 TeV 3 TeV

Total 272 MW Total 364 MW Total 589 MW
Drive Beam Main Beam Main Tunnel Drive Beam Main Beam Main Tunnel Drive Beam Main Beam Main Tunnel
up to 9 GeV up to 9 GeV up to 9 GeV
FMT FMT
FMT 13% 15%
12% 47TMW 88MW
32MW
BDS+ Exp
DR 17%
129, 47MW
32MW
RF il RF
319 43% 579
S8SMW I155MW 305MW
So
13% So
3I5MW 7% 4535
24MW 20T
43% 33% 24% 56% 21% 23%
117MW 90MW 6AMW 01V M SIM 68% 13%  20%
3OIMW FAMW 115MW

RF: drive beam linac, FMT: frequency multiplication & transport, So: sources & acceleration up to 2.5 GeV, DR: damping rings,
Tr: booster linac up to 9 GeV & transport, ML: main linacs, BDS: beam delivery system, main dump & experimental area
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_ Jy CLIC CDR power consumption by te

500 GeV A 1.5 TeV 3 TeV

Total 272 MW Total 364 MW Total 589 MW
Radio Frequency Magnets Other Radio Frequency = Magnets Other Radio Frequency Magnets Other
Components Components Components
Exp+ Area
Exp+Area Exp+0Area 5%
12% 9% 3IMW
3IMW 3IMW
BIC 3%
BIC 3% 17MW
% QN
RF Magnets RF Magnets RF Magnets
40% 20% 45% 21% 50% 21%
109MW S4MW 161MW 7SMw 280MW 124MW
40% 20% 40% 45% 21% 35%
109M %’ S4MW 109MW 161MW T5SMW 125MW 233‘?;1%’ 1 2%1}?}? ,16292{‘5?17

CV: cooling & ventilation, NW: electrical network losses, BIC: beam instrumentation & control
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y From power to energy
CLIC CDR assumptions
For each value of CM energy
- 177 days/year of beam time
188 days/year of scheduled and fault stops
First year
- 59 days of injector and one-by-one sector commissioning
- 59 days of main linac commissioning, one linac at a time
- 59 days of luminosity operation
- All along : 50% of downtime
Second year
- 88 days with one linac at a time and 30 % of downtime
- 88 days without downtime
Third year
- Still only one e+ target at 0.5 TeV, like for years 1 & 2
- Nominal at 1.5 and 3 TeV
Power during stops: scheduled (shutdown), unscheduled (fault),
downtime
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y Paths to power & energy savings

e Reduced current density in normal-conducting magnets

— Magnets & overheads (electrical network losses, cooling & ventilation) represent 27
% of overall power at 3 TeV

— For given magnet size and field, power scales with current density

— Compromise between capital & real estate costs on one hand, and operation costs
on the other hand

= Talk by M. Modena, this session

e Reduction of HVAC duty
— Most heat loads already taken by water cooling
— Possible further reduction in main tunnel by thermal shielding of cables

— Possible reduction in surface buildings by improved thermal insulation, natural
ventilation, relaxation of temperature limits

= Talk by M. Nonis, this session

Ph. Lebrun CLIC Workshop 2014 12
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y Paths to power & energy savings &
Efficiency

Grid-to-RF power conversion
— R&D on klystrons
— R&D on modulators, powering from the grid at HV

= Talks by D. Aguglia, A. Dal Gobbo, F. Cabaleiro Magallanes, M.S. Blume, M.
Jankovic, this session

= Talks by S. Doebert, I. Syratchev, 1. Guzilov, session «X-band & Power/Energy»
RF-to-beam power conversion

— Re-optimization of accelerating structures and gradient

= Talk by D. Schulte, plenary session «Accelerators», Friday 7 February
Permanent or super-ferric superconducting magne

— Permanent magnets ngs a3
e distributed uses, e.g, w3

e « grouped uses, e.g. combiner rings, DB return loops in main linacs

Lebrun CLIC Workshop 2014 13
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)’ Development of high-efficiency modulators
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Low-power configurations in case of beam interruption

Paths to power & energy savings
Energy management

0.5 272 168 37
A 1.4 364 190 42
3.0 589 268 58
0.5 235 167 35
B 1.5 364 190 42
3.0 589 268 58

Modulation of scheduled operation to match electricity demand

— Seasonal load shedding

— Diurnal peak shaving

= Talks by A. Latina & F. Duval, this session
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Paths to power & energy savings

Waste heat recovery

o Possibilities of heat rejection at higher temperature, e.g. beam dumps

e Valorization of low-grade waste heat for concomitant needs, e.g. residential
heating or absorption cooling
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V Is waste heat worth recovery? A[D

N/~

e Consider heat rejection Q at temperature T with environment at T,

o What are the recovery options?

1) use as such
o Is there a concomitant need for heat Q at T=T,,?

2) use as heat at higher temperature T >T
o Minimum work required for heat pump W,,, = Q (Tys/T — 1)
o Example: for raising waste heat from 40 °C to 80 °C, W, = 0.13 Q
o In practice, W,., may be 2 to 3 times higher
o May still be an interesting option
3) use to produce work
o Maximum work produced (Carnot machine) W, = Q (1 —Ty/T)
o This can also be written W, ., = Q — T, AS = Exergy
o Example: with T =40 °Cand T, = 15 °C, W,, = 0.08 Q
o In practice, W, is only a fraction of this
o Very inefficient unless one operates at higher T

= Investigate all options, using both energy and exergy as f.o.m.

Ph. Lebrun CLIC Workshop 2014 19
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y Energy dissipation & exergy in magnet systems
<7 T cooling water = 40 °C

Tenvironment =Tair =15 C =288 K
Twater=40C=313K
Assume 0.9 of magnet energy in water, 0.1in air

Electrical Electrical Heat rejected Heat rejected Electrical Exergyin
efficiency energy in water inair exergy water
Network NA 100.0 100.0
AC distribution 0.97 97.0 3.0 97.0
Power converter 0.9 87.3 9.7 87.3 0.8
DC cables 0.95 82.9 4.4 82.9
Magnet 0 0.0 74.6 8.3 0.0 6.0
Environment NA 84.3 15.7 6.7

e 100 drawn from network produces only 82.9 used in magnet

e Waste heat in water contains 84.3% of consumed energy, but only 6.7% of consumed
exergy: waste heat recovery is therefore interesting for final use as heat, not as source
of electrical/mechanical energy

e Exergy economy should target improvement of electrical efficiency upstream the
magnets, rather than waste heat recovery

Ph. Lebrun CLIC Workshop 2014 20
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y Energy dissipation & exergy in magnet systems
<7 T cooling water = 60 °C

Tenvironment =Tair=15C=288K
Twater=60C=333K
Assume 0.9 of magnet energy in water, 0.1in air

Electrical Electrical Heatrejected Heat rejected Electrical Exergy in
efficiency energy in water inair exergy water
Network NA 100.0 100.0
AC distribution 0.97 97.0 3.0 97.0
Power converter 0.9 87.3 9.7 87.3 1.3
DC cables 0.95 82.9 4.4 82.9
Magnet 0 0.0 74.6 8.3 0.0 10.1
Environment NA 84.3 15.7 11.4

e Increasing cooling water temperature to 60 °C raises its exergy content to 11.4%

Ph. Lebrun CLIC Workshop 2014 21
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y Energy dissipation & exergy in CLIC RF systems

7 T cooling water = 40 °C

Tenvironment =Tair=15C=288K

Twaterl =40C=313K

Twater2=40C=313K

Assume 0.25 of AS energy in beam, 0.65in water, 0.1in air

Electrical Electrical Heat rejected Heat rejected Heat rejected Electrical Exergyin Exergyin
efficiency energy in waterl in water2 inair exergy waterl water2
Network NA 100.0 100.0
AC distribution 0.97 97.0 3.0 97.0
Modulator 0.89 86.3 10.7 86.3 0.9
Klystron 0.7 60.4 25.9 60.4 2.1
RF distr & DB cavity 0.89 53.8 6.6 53.8 0.5
PETS 0.98 52.7 1.1 52.7 0.1
DB deceleration 0.83 437 9.0 43.7 0.7
AS 0.25 10.9 28.4 4.4 10.9 2.3
MB dump 0 0.0 10.9 0.0 0.9
Environment NA 46.8 45.8 7.4 3.7 3.7

e 100 drawn from network produces only 53.8 in PETS, 43.7 in AS, of which 10.9 goes
into the main beam

e Waste heat in water contains 92.6% of consumed energy, but only 7.4% of consumed
exergy: waste heat should rather be valorized as heat

e Exergy economy should target improvement of electrical efficiency upstream the
magnets, rather than waste heat recovery

Ph. Lebrun CLIC Workshop 2014 22
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y Energy dissipation & exergy in CLIC RF systems m
<7\ T cooling water = 40 °C & 80 °C (klystrons & beam dumps)  “wul»”’

Tenvironment =Tair=15C=288K

Twaterl =40C=313K

Twater2=80C=353K

Assume 0.25 of AS energy in beam, 0.65in water, 0.1in air

Electrical Electrical Heat rejected Heat rejected Heat rejected Electrical Exergyin Exergyin
efficiency energy in waterl in water2 inair exergy waterl water2
Network NA 100.0 100.0
ACdistribution 0.97 97.0 3.0 97.0
Modulator 0.89 86.3 10.7 86.3 0.9
Klystron 0.7 60.4 25.9 60.4 4.8
RF distr & DB cavity 0.89 53.8 6.6 53.8 0.5
PETS 0.98 52.7 1.1 52.7 0.1
DB deceleration 0.83 43.7 9.0 43.7 1.6
AS 0.25 10.9 28.4 4.4 10.9 2.3
MB dump 0 0.0 10.9 0.0 2.0
Environment NA 46.8 45.8 7.4 3.7 8.4

e Increasing klystron and beam dump cooling water temperature to 80 °C raises its
exergy content to 8.4%, i.e. 12.1% in total (waterl and water2)

Ph. Lebrun CLIC Workshop 2014 23
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y Conclusions ‘n

e Power consumption of CLIC and other large accelerator projects at the energy
frontier has become a major issue in their technical feasibility, economic
affordability and social acceptance

e Power and energy savings are therefore essential aspects of the study of such
machines from the conceptual design phase

e Paths towards this goal include sobriety, efficiency, energy management and
waste heat recovery and valorisation

e This is acknowledged, /inter alia, in the EnEfficient Work Package of the
EuCARD?2 Integrating Activity in the EU Seventh Framework Programme

e The following presentations in this session of the CLIC Workshop 2014
address most of these lines of action

Ph. Lebrun CLIC Workshop 2014 24
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