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timation method in its entirety, but it should be equally
valid.

7.3. Comparison to other results

Figure 35 compares our results from Table 3 (modeling
approach) with other measurements from galaxy surveys,
but must be interpreted with care. The UZC points may
contain excess large-scale power due to selection function
effects (Padmanabhan et al. 2000; THX02), and the an-
gular SDSS points measured from the early data release
sample are difficult to interpret because of their extremely
broad window functions. Only the SDSS, APM and angu-
lar SDSS points can be interpreted as measuring the large-
scale matter power spectrum with constant bias, since the
others have not been corrected for the red-tilting effect
of luminosity-dependent bias. The Percival et al. (2001)
2dFGRS analysis unfortunately cannot be directly plotted
in the figure because of its complicated window functions.

Figure 36 is the same as Figure 35, but restricted to a
comparison of decorrelated power spectra, those for SDSS,
2dFGRS and PSCz. Because the power spectra are decor-
related, it is fair to do “chi-by-eye” when examining this
Figure. The similarity in the bumps and wiggles between

Fig. 35.— Comparison with other galaxy power spectrum measure-
ments. Numerous caveats must be borne in mind when interpreting
this figure. Our SDSS power spectrum measurements are those from
Figure 22, corrected for the red-tilting effect of luminosity dependent
bias. The purely angular analyses of the APM survey (Efstathiou
& Moody 2001) and the SDSS (the points are from Tegmark et al.
2002 for galaxies in the magnitude range 21 < r∗ < 22 — see also
Dodelson et al. 2002) should also be free of this effect, but rep-
resent different mixtures of luminosities. The 2dFGRS points are
from the analysis of HTX02, and like the PSCz points (HTP00) and
the UZC points (THX02) have not been corrected for this effect,
whereas the Percival et al. 2dFGRS analysis should be unafflicted
by such red-tilting. The influential PD94 points (Table 1 from Pea-
cock & Dodds 1994), summarizing the state-of-the-art a decade ago,
are shown assuming IRAS bias of unity and the then fashionable
density parameter Ωm = 1.

Fig. 36.— Same as Figure 35, but restricted to a comparison
of decorrelated power spectra, those for SDSS, 2dFGRS and PSCz.
The similarity in the bumps and wiggles between the three power
spectra is intriguing.

Fig. 37.— Comparison of our results with other P (k) constraints.
The location of CMB, cluster, lensing and Lyα forest points in this
plane depends on the cosmic matter budget (and, for the CMB,
on the reionization optical depth τ), so requiring consistency with
SDSS constrains these cosmological parameters without assumptions
about the primordial power spectrum. This figure is for the case of a
“vanilla” flat scalar scale-invariant model with Ωm = 0.28, h = 0.72
and Ωb/Ωm = 0.16, τ = 0.17 (Spergel et al. 2003; Verde et al. 2003,
Tegmark et al. 2003b), assuming b∗ = 0.92 for the SDSS galaxies.
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Planck Collaboration 13

Early times information I: CMB

Planck Collaboration: Cosmological parameters

Planck Planck+lensing Planck+WP

Parameter Best fit 68% limits Best fit 68% limits Best fit 68% limits

⌦bh2 . . . . . . . . . . 0.022068 0.02207 ± 0.00033 0.022242 0.02217 ± 0.00033 0.022032 0.02205 ± 0.00028

⌦ch2 . . . . . . . . . . 0.12029 0.1196 ± 0.0031 0.11805 0.1186 ± 0.0031 0.12038 0.1199 ± 0.0027

100✓MC . . . . . . . . 1.04122 1.04132 ± 0.00068 1.04150 1.04141 ± 0.00067 1.04119 1.04131 ± 0.00063

⌧ . . . . . . . . . . . . 0.0925 0.097 ± 0.038 0.0949 0.089 ± 0.032 0.0925 0.089+0.012
�0.014

ns . . . . . . . . . . . 0.9624 0.9616 ± 0.0094 0.9675 0.9635 ± 0.0094 0.9619 0.9603 ± 0.0073

ln(1010As) . . . . . . . 3.098 3.103 ± 0.072 3.098 3.085 ± 0.057 3.0980 3.089+0.024
�0.027

⌦⇤ . . . . . . . . . . . 0.6825 0.686 ± 0.020 0.6964 0.693 ± 0.019 0.6817 0.685+0.018
�0.016

⌦m . . . . . . . . . . . 0.3175 0.314 ± 0.020 0.3036 0.307 ± 0.019 0.3183 0.315+0.016
�0.018

�8 . . . . . . . . . . . 0.8344 0.834 ± 0.027 0.8285 0.823 ± 0.018 0.8347 0.829 ± 0.012

zre . . . . . . . . . . . 11.35 11.4+4.0
�2.8 11.45 10.8+3.1

�2.5 11.37 11.1 ± 1.1

H0 . . . . . . . . . . . 67.11 67.4 ± 1.4 68.14 67.9 ± 1.5 67.04 67.3 ± 1.2

109As . . . . . . . . . 2.215 2.23 ± 0.16 2.215 2.19+0.12
�0.14 2.215 2.196+0.051

�0.060

⌦mh2 . . . . . . . . . 0.14300 0.1423 ± 0.0029 0.14094 0.1414 ± 0.0029 0.14305 0.1426 ± 0.0025

⌦mh3 . . . . . . . . . 0.09597 0.09590 ± 0.00059 0.09603 0.09593 ± 0.00058 0.09591 0.09589 ± 0.00057

YP . . . . . . . . . . . 0.247710 0.24771 ± 0.00014 0.247785 0.24775 ± 0.00014 0.247695 0.24770 ± 0.00012

Age/Gyr . . . . . . . 13.819 13.813 ± 0.058 13.784 13.796 ± 0.058 13.8242 13.817 ± 0.048

z⇤ . . . . . . . . . . . 1090.43 1090.37 ± 0.65 1090.01 1090.16 ± 0.65 1090.48 1090.43 ± 0.54

r⇤ . . . . . . . . . . . 144.58 144.75 ± 0.66 145.02 144.96 ± 0.66 144.58 144.71 ± 0.60

100✓⇤ . . . . . . . . . 1.04139 1.04148 ± 0.00066 1.04164 1.04156 ± 0.00066 1.04136 1.04147 ± 0.00062

zdrag . . . . . . . . . . 1059.32 1059.29 ± 0.65 1059.59 1059.43 ± 0.64 1059.25 1059.25 ± 0.58

rdrag . . . . . . . . . . 147.34 147.53 ± 0.64 147.74 147.70 ± 0.63 147.36 147.49 ± 0.59

kD . . . . . . . . . . . 0.14026 0.14007 ± 0.00064 0.13998 0.13996 ± 0.00062 0.14022 0.14009 ± 0.00063

100✓D . . . . . . . . . 0.161332 0.16137 ± 0.00037 0.161196 0.16129 ± 0.00036 0.161375 0.16140 ± 0.00034

zeq . . . . . . . . . . . 3402 3386 ± 69 3352 3362 ± 69 3403 3391 ± 60

100✓eq . . . . . . . . . 0.8128 0.816 ± 0.013 0.8224 0.821 ± 0.013 0.8125 0.815 ± 0.011

rdrag/DV(0.57) . . . . 0.07130 0.0716 ± 0.0011 0.07207 0.0719 ± 0.0011 0.07126 0.07147 ± 0.00091

Table 2. Cosmological parameter values for the six-parameter base ⇤CDM model. Columns 2 and 3 give results for the Planck
temperature power spectrum data alone. Columns 4 and 5 combine the Planck temperature data with Planck lensing, and columns
6 and 7 include WMAP polarization at low multipoles. We give best fit parameters as well as 68% confidence limits for constrained
parameters. The first six parameters have flat priors. The remainder are derived parameters as discussed in Sect. 2. Beam, calibration
parameters, and foreground parameters (see Sect. 4) are not listed for brevity. Constraints on foreground parameters for Planck+WP
are given later in Table 5.

3.2. Hubble parameter and dark energy density

The Hubble constant, H0, and matter density parameter, ⌦m,
are only tightly constrained in the combination ⌦mh3 discussed
above, but the extent of the degeneracy is limited by the e↵ect
of ⌦mh2 on the relative heights of the acoustic peaks. The pro-
jection of the constraint ellipse shown in Fig. 3 onto the axes
therefore yields useful marginalized constraints on H0 and ⌦m
(or equivalently ⌦⇤) separately. We find the 2% constraint on
H0:

H0 = (67.4 ± 1.4) km s�1 Mpc�1 (68%; Planck). (13)

The corresponding constraint on the dark energy density param-
eter is

⌦⇤ = 0.686 ± 0.020 (68%; Planck), (14)

and for the physical matter density we find

⌦mh2 = 0.1423 ± 0.0029 (68%; Planck). (15)

Note that these indirect constraints are highly model depen-
dent. The data only measure accurately the acoustic scale, and

the relation to underlying expansion parameters (e.g., via the
angular-diameter distance) depends on the assumed cosmology,
including the shape of the primordial fluctuation spectrum. Even
small changes in model assumptions can change H0 noticeably;
for example, if we neglect the 0.06 eV neutrino mass expected
in the minimal hierarchy, and instead take

P
m⌫ = 0, the Hubble

parameter constraint shifts to

H0 = (68.0 ± 1.4) km s�1 Mpc�1 (68%; Planck,
P

m⌫ = 0). (16)

3.3. Matter densities

Planck can measure the matter densities in baryons and dark
matter from the relative heights of the acoustic peaks. However,
as discussed above, there is a partial degeneracy with the spec-
tral index and other parameters that limits the precision of the
determination. With Planck there are now enough well measured
peaks that the extent of the degeneracy is limited, giving ⌦bh2 to
an accuracy of 1.5% without any additional data:

⌦bh2 = 0.02207 ± 0.00033 (68%; Planck). (17)
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FIG. 9: Correction to the PPF approximation for the
velocity divergence (three top lines) and density power
spectrum (three bottom lines) due to velocity dispersion
at redshifts z = 0 (solid), z = 0.5 (dashed) and z = 1
(dotted). Note that the actual correction is negative in
all cases, we plot their absolute values. These correc-
tions are computed in linear theory, Eqs. (45) and (48),
thus extrapolation well beyond k ∼ 0.1 h Mpc−1 is only
illustrative.

spectrum reads

Pw(k) =

(

2

nvd + 1

)2

Pqw
(k). (39)

Figure 8 shows the results of this consistency check.
In it, we show the measured left and right hand sides
of Eq. (39) for redshifts z = 0, 1, 3. The agreement
in all cases is very good, improving, as expected, for
higher redshifts.

B. PT + Velocity Dispersion

We are interested in estimating the large-scale cor-
rections to the PPF approximation due to the orbit-
crossing induced qθ and qw. As we can see from
the linearized equations of motion, Eqs. (35-37), the

scalar mode of the stress tensor corrects the PPF ap-
proximation already at the linear level, whereas the
vector modes are decoupled in linear theory and cor-
rect the PPF at higher-order in PT. In this section
we estimate the corrections due to the scalar mode
qθ (roughly speaking, velocity dispersion), while in
the next section we tackle the corrections induced
by qw at leading order in nonlinear PT. Since these
deviations are small at large scales we can consider
them separately.

The scalar mode correction can be included by
writing the modified linear theory of Eqs. (35-36) in
a compact form by using a two-component object
ψ1 = δ, ψ2 = θ that obeys the linear equations of
motion,

∂ηψa(k, η) + Ωab ψb(k, η) = Qa(k, η), (40)

where Ωab is the 2x2 matrix,

Ωab =

(

0 −1

− 3
2

1
2

)

(41)

and Q(k, η) = (0, qθ(k, η)). The formal solution to
these equations can be written as

ψa(k, η) = gab(η)φb(k)+

∫ η′

0
dη′gab(η−η

′)Qb(k, η′),

(42)
where φ represents the initial conditions and gab is
the linear propagator [48],

gab(η) =
eη

5

(

3 2

3 2

)

−
e−3η/2

5

(

−2 2

3 −3

)

(43)

Then, the density field in linear theory is given by

δ(k, η) = δppf(k, η) +
qθ(k, η)

(nvd/2 − 1)(nvd/2 + 3/2)
,

(44)

where, as in Eq. (38), we assumed that qθ ∝ Dnvd/2
+ ,

and δppf(k, η) ≡ gab(η)φb(k) is the usual linear the-
ory evolved density field in the PPF approximation.
We can then write the density power spectrum to
leading order in PPF corrections as

Pδδ(k) = Pppf(k)+
2 Pδ qθ

(k)

(nvd/2 − 1)(nvd/2 + 3/2)
, (45)

14
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FIG. 11: Corrections to the density power spectrum at
z = 0 due to stress tensor vector modes (vorticity ef-
fects), see Eqs. (67) and (68). Note that the ∆P13 contri-
bution (long dashed lines) is negative and larger in mag-
nitude than the ∆P22 contribution (dashed lines). The
total correction (solid lines) is negative and reaches 1% of
the linear spectrum (top dotted lines) at k ∼ 1h Mpc−1,
where further nonlinear effects not included here should
become important.

10−4 of the linear spectrum, and thus totally neg-
ligible. The reason for this is that by symmetry
the vorticity does not couple to the scalar modes,
it is only through vorticity squared that the effect is
present. We expect similar results for the velocity
divergence power spectrum within a factor of a few,
still completely negligible at large scales.

V. CONCLUSIONS

We studied the impact of orbit crossing in the
large-scale power spectra of density and velocity di-
vergence fields, which are usually described in the
pressureless perfect fluid (PPF) approximation. We
presented a method to extend perturbation theory
(PT) beyond the PPF approximation, based on mea-
suring the stress tensor induced by orbit crossing in

numerical simulations. The stress tensor, when de-
composed into scalar and vector modes leads to cor-
rections associated with velocity dispersion and the
effects of vorticity. We found the effects due to the
scalar modes to be small, but not negligible at large
scales (k ≃ 0.1 h Mpc−1), particularly for the ve-
locity divergence power spectrum (see Fig. 9). The
impact of vorticity on large scales is much smaller,
see Fig. 11. These two effects appear at different or-
ders in PT and have been included separately as we
are interested in large scales where the induced cor-
rections are small. Both lead to suppressions of the
power spectra predicted by the PPF approximation,
as expected physically since velocity dispersion and
vorticity should inhibit collapse. In this regard we
emphasize that neglecting orbit crossing has oppo-
site effects on Eulerian compared to Lagrangian PT.
For Lagrangian PT, neglecting orbit crossing leads
to (much more severe) underestimates of the density
power spectrum (see e.g. [8] for a recent example),
since neglecting self-gravity in caustics leads to arti-
ficial thickening of such structures when trajectories
cross without interacting.

A novel aspect of our calculation is the estimation
of the stress tensor and the vorticity and divergence
power spectra from numerical simulations. To esti-
mate velocity fields, we applied the Delaunay tessel-
lation method, which we have shown to be a more
reliable estimator than traditional mass weighting
schemes. While estimates of the velocity divergence
are robust, we found that measurements of the vor-
ticity power spectrum are significantly more diffi-
cult, due to aliasing during the measurement pro-
cess and most importantly lack of resolution in the
simulations. For the latter we have found that low
resolution simulations can overestimate the vortic-
ity power spectrum by an order of magnitude. This
maybe be due to insufficient spatial resolution in
multistreaming regions, with the overestimate per-
haps related to aliasing effects during the PM part
of the force calculation, which may generate a vec-
tor mode. In any event, for high enough resolution
we find that the vorticity power spectrum converges
to a stable answer. On the other hand, care must
be taken that these spurious effects are not present
when using numerical simulations to study nonlin-
ear velocities, since artificial vorticity can amplify
the velocity power spectrum at small scales.

A nontrivial check of our numerical calculation

19

Pressureless perfect fluid

Vorticity

Shell-crossing

✓

�

✓̇(k, t) +H✓(k, t) +
3

2
⌦mH2�(k, t) = q✓

ẇi +
1

2
wi = qiw

�̇(k, t) + ✓(k, t) = 0



Perturbation theory (PT)

Linear Vertices (MC)

0.01 0.1 1 10
0.01

0.1

1

10

100

P
(k
)
[(
M

pc
/h

)3
]

z = 0

BAO weakly non-linear!
Horizon Run 2,  Kim et al. 11

k (h/Mpc)

Linear prediction

Test cosmic
expansion!

✓̇(k, t) +H✓(k, t) +
3

2
⌦mH2�(k, t) = ��(k1, k2)✓(k1, t)✓(k2, t)�

(3)(k1 + k2 � k)

�̇(k, t) + ✓(k, t) = �↵(k1, k2)✓(k1, t)�(k2, t)�
(3)(k1 + k2 � k)

✓ ⌘ @iv
i

↵(k1, k2) ⌘
(k1 + k2) · k1

k21
�(k1, k2) ⌘

(k1 + k2)2k2 · k1
2k21k

2
2

,

�(k, t) =
X

n

F̃n(t; k1, ..., kn)�(k1, t0) . . . �(kn, t0)�
(3)(k �

X
ki)

Linear (growing) mode: �L(k, t) = D(+)(t)�(k, t0)

d2D(+)

d⌧2
+HdD(+)

d⌧
=

3

2
⌦mH2D(+)



NNLO formalism

Power spectrum

P (k, t) = a2P0 + a4(2P13 + P22) + a6(2P15 + 2P24 + P33) + ...

Gaussian IC

NLO NNLO

NNLO (2L):

NLO (1L) : 

�(3)(
X

ki � k) �(3)(
X

qi + k)
F1(k1) = 1

�(k, t) =
X

n

a(t)nFn(k1, ..., kn)�(k1, t0) . . . �(kn, t0)�
(3)(k �

X
ki)

⌦m = 1

h�(k, t)�(k0, t)i = P (k, t)�(3)(k + k0)

⇠ �(k, t0)
4

⇠ �(k, t0)
6

+...

Fi Fj

P22 = 2

Z
d3q [F s

2 (q, k � q)]2 P0(q)P0(|k � q|)
P13 = 3P0(k)

Z
d3qF s

3 (k, q,�q)P0(q)

h�(k, t0)�(k0, (t0)i = P0(k)�
(3)(k + k0)



0.01 0.1 1 10
0.01

0.1

1

10

100

NNLO results

P
(k
)
[(
M

pc
/h

)3
]

k (h/Mpc)

z = 0

Linear

NLO correction

NNLO correction

e.g. Taruya et al. 12

DB, Garny and Konstandin 13A

Convergence at low-k? kNL

N-body
Horizon Run 2,  Kim et al. 11



Enhanced contribution from soft modes?

Expectation for NLO Soft modes k � q

P13 = 3P0(k)

Z
d3qF s

3 (k, q,�q)P0(q) ⇠ P0(k) k
2

Z
dqP0(q)

⇠ 13 k ⇠ kNL

BUT it is cancelled by       !   P22

 at

Follows from Galilean invariance!

Similar for all loops: it can be resummed! (RPT, eikonal)

PNL = e�k2 R
dqP0(q)/2P0(k) + PMC

Jain, Bertschinger 95
Scoccimarro, Frieman 95

Bernardeau et al 12

(spurious scale for PS, important for other quantities)

For numerics, the cancellation is challenging:
make it explicit by an IR safe integrand

DB, Garny and Konstandin 13A
Carrasco et al. 13

Crocce, Scoccimarro, 05
Bernardeau et al. 11

x

i 7! x

i + V

i
T

�k 7! �ke
ik·V t(T ),

DB, Garny and Konstandin 13A



 0.01

 0.1

 1

 10

 100

 0.001  0.01  0.1  1  10

P(
k,

z=
0)

 [(
h/

M
pc

)-3
]

k [h/Mpc]

Plin
1-loop
2-loop
3-loop kref=k
3-loop log measure

Figure 1: One, two and three-loop contributions to the equal-time power spectrum
obtained from a numerical Monte Carlo integration within standard perturbation
theory at z = 0. The linear power spectrum is obtained from the initial power
spectrum from CAMB [20] using the ΛCDM model with WMAP5 parameters.
For the three-loop order, the error bars show an estimate for the numerical error
obtained by multiplying the error output of the CUBA routine Suave by a factor
of two. The relative error is ≤ 0.002 for k ≤ 0.55 h/Mpc. The black diamonds
and grey crosses correspond to two different parametrizations of the absolute loop
momenta (see App. A).

scales. For even larger momentum k, one observes that each loop contri-
bution features the expected behavior (3.2) with a logarithmic enhancement
compared to the linear spectrum. But also in this regime, the loop expansion
appears to be divergent.

The picture might change if one goes to larger redshift z, where the
expansion parameter can be efficiently suppressed since σ2

l ∝ D+(z)2 ∼ (1 +
z)−2. In Figs. 2 and 3 we show some comparisons between our three-loop
SPT results (black lines and diamonds) and N-body simulations (red dots,
Horizon Run 2 [27]) for various redshifts (see App. C for further details). For
large redshift (z ! 1.75) the three-loop contribution may lead to an improved
agreement with the N-body data, while it clearly degrades the agreement
compared to the two-loop at lower redshifts. The same happens for the two-
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Figure 1: One, two and three-loop contributions to the equal-time power spectrum
obtained from a numerical Monte Carlo integration within standard perturbation
theory at z = 0. The linear power spectrum is obtained from the initial power
spectrum from CAMB [20] using the ΛCDM model with WMAP5 parameters.
For the three-loop order, the error bars show an estimate for the numerical error
obtained by multiplying the error output of the CUBA routine Suave by a factor
of two. The relative error is ≤ 0.002 for k ≤ 0.55 h/Mpc. The black diamonds
and grey crosses correspond to two different parametrizations of the absolute loop
momenta (see App. A).

scales. For even larger momentum k, one observes that each loop contri-
bution features the expected behavior (3.2) with a logarithmic enhancement
compared to the linear spectrum. But also in this regime, the loop expansion
appears to be divergent.

The picture might change if one goes to larger redshift z, where the
expansion parameter can be efficiently suppressed since σ2

l ∝ D+(z)2 ∼ (1 +
z)−2. In Figs. 2 and 3 we show some comparisons between our three-loop
SPT results (black lines and diamonds) and N-body simulations (red dots,
Horizon Run 2 [27]) for various redshifts (see App. C for further details). For
large redshift (z ! 1.75) the three-loop contribution may lead to an improved
agreement with the N-body data, while it clearly degrades the agreement
compared to the two-loop at lower redshifts. The same happens for the two-
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Padé resummation
Goal: produce a convergent series!

non-convergent!Small k

Treat it as an asymptotic series

P2�loop

/P
lin

⇠ 6% z = 0, k = 0.1 h/Mpc

P
L�loop

! �C
L

244⇡

325
a2(L+1)k2P0(k)

Z
dqP0(q)�

2L�2
l

(q)

Resummation to get 1%!

K(x) =
X

CLx
L�1

K(x)Padé
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Padé results: convergence at low k
Result for Padé resummed small-k limit
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Figure 2: Comparison at redshifts z = {0, 0.375, 0.833, 1.75} of SPT up to one
loop (black dashed lines), two loops (black dot-dashed) and three loops (black
diamonds) with N-body results of the Horizon Run 2 [27] (red dots, see App. C).
The black line corresponds to the linear result. We also show the results of Padé
resummation (same styles as for SPT but in blue, see Sec. 4); at z = 0 the blue
and black dashed line lie on top of each other.

loop at even smaller redshifts and at small momenta. This indicates that for
any redshift, adding loop contributions improves the agreement only up to a
certain order, as typically expected for asymptotically converging series.

In general, in such a situation, one expects that the partial sum up to
the smallest term yields the most accurate estimate of the full result, with
a theoretical uncertainty of the order of the smallest term. For a realistic
initial power spectrum, this indicates that the power spectrum at z ! 1 can
be estimated with SPT at most to an accuracy of the order of the two-loop
contribution (e.g. P2−loop/Plin ≃ 6% at z = 0 and k = 0.1 h/Mpc).

As already emphasized, this does not mean that it is in principle impos-
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Padé results: perturbation theory
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low�k

+�P1�loop

...

�P
L�loop

⌘ P
L�loop

� P small�k

L�loop

Linear

NNLO(P)

NLO(P)

NNNLO(P)

N-body

DB, Garny and Konstandin 13B

NNNLO(SPT)

Horizon Run 2, 
 Kim et al. 11

 0.01

 0.1

 1

 10

 100

 0.001  0.01  0.1  1  10

P(
k,

z=
0)

 [(
h/

M
pc

)-3
]

k [h/Mpc]

Plin
1-loop
2-loop
3-loop kref=k
3-loop log measure

Figure 1: One, two and three-loop contributions to the equal-time power spectrum
obtained from a numerical Monte Carlo integration within standard perturbation
theory at z = 0. The linear power spectrum is obtained from the initial power
spectrum from CAMB [20] using the ΛCDM model with WMAP5 parameters.
For the three-loop order, the error bars show an estimate for the numerical error
obtained by multiplying the error output of the CUBA routine Suave by a factor
of two. The relative error is ≤ 0.002 for k ≤ 0.55 h/Mpc. The black diamonds
and grey crosses correspond to two different parametrizations of the absolute loop
momenta (see App. A).

scales. For even larger momentum k, one observes that each loop contri-
bution features the expected behavior (3.2) with a logarithmic enhancement
compared to the linear spectrum. But also in this regime, the loop expansion
appears to be divergent.

The picture might change if one goes to larger redshift z, where the
expansion parameter can be efficiently suppressed since σ2

l ∝ D+(z)2 ∼ (1 +
z)−2. In Figs. 2 and 3 we show some comparisons between our three-loop
SPT results (black lines and diamonds) and N-body simulations (red dots,
Horizon Run 2 [27]) for various redshifts (see App. C for further details). For
large redshift (z ! 1.75) the three-loop contribution may lead to an improved
agreement with the N-body data, while it clearly degrades the agreement
compared to the two-loop at lower redshifts. The same happens for the two-
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Figure 2: Comparison at redshifts z = {0, 0.375, 0.833, 1.75} of SPT up to one
loop (black dashed lines), two loops (black dot-dashed) and three loops (black
diamonds) with N-body results of the Horizon Run 2 [27] (red dots, see App. C).
The black line corresponds to the linear result. We also show the results of Padé
resummation (same styles as for SPT but in blue, see Sec. 4); at z = 0 the blue
and black dashed line lie on top of each other.

loop at even smaller redshifts and at small momenta. This indicates that for
any redshift, adding loop contributions improves the agreement only up to a
certain order, as typically expected for asymptotically converging series.

In general, in such a situation, one expects that the partial sum up to
the smallest term yields the most accurate estimate of the full result, with
a theoretical uncertainty of the order of the smallest term. For a realistic
initial power spectrum, this indicates that the power spectrum at z ! 1 can
be estimated with SPT at most to an accuracy of the order of the two-loop
contribution (e.g. P2−loop/Plin ≃ 6% at z = 0 and k = 0.1 h/Mpc).

As already emphasized, this does not mean that it is in principle impos-
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Padé results: redshift dependence



What’s going on? Padé integrandsResult for Padé resummed small-k limit
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The resummation damps the UV dependence! 

This may made the series convergent! 
(and the 1% target attainable)
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Conclusions

At this precision, the Universe at large scales behaves
    like a pressureless perfect fluid.

 Perturbation theory in        , but this grows with time.

PT series is not convergent! (seems asymptotic)
               (result at 3 loop).

Padé ansatz: parameter free resummation. Much better 
convergence properties and agreement with N-body.

(percent accuracy at BAO scales and         reachable) z = 0

Future surveys will test cosmological expansion and
     structure formation to percent level. 

�k(t0)



For the future

Other observables (    , bispectrum,...), other IC (NG).

Predictions for observations: results in redshift space,
     parametrization of BAOs, bias...

Other ways of organizing (resum) the series?
     E.g. RPT or EFTofLSS: coarse-grained fluid to get rid 
     of the influence of high-k at mildly non-linear k .

L

Pietroni et al. 11

Carrasco et al. 12

More analytical understanding.

P✓✓



Primordial non-Gaussianity from the large scale structure 17

Figure 2. Halo-halo and halo-matter power spectra Ph(k) and Phδ(k) measured
in simulations of the Gaussian model and of the local f loc

NL
type with f loc

NL
= ±100.

Halos of mass M > 2 × 1013 M⊙/h were identified at redshift z = 2 with a
SO finder. The linear Gaussian bias of this sample is b1(M) = 2.53. The
error bars represent the scatter among 8 realizations. The solid and dashed
curve show the theoretical Ph(k) and Phδ(k) obtained wih the non-Gaussian bias
correction Eq.(34). For f loc

NL
= −100, the cross-power spectrum is negative on

scales k ! 0.005 hMpc−1, in good agreement with the theoretical prediction.

between the theoretical and measured non-Gaussian bias corrections in non-Gaussian
models of the local cubic-order coupling glocNLφ

3 [100]. Understanding these results will
clearly require a better theoretical modeling of halo clustering.

4.3.3. Redshift distortions Peculiar velocities generate systematic differences between
the spatial distribution of data in real and redshift space. These redshift distortions
must be properly taken into account in order to extract fX

NL from redshift surveys. On
the linear scales of interest, the redshift space power spectrum of biased tracers reads
as [159, 160]

P s(k, µ) =
[

b21Pδ(k) + 2b1fµ
2Pδθ(k) + f2µ4Pθ(k)

]

, (35)

where Pδθ and Pθ are the density-velocity and velocity divergence power spectra, µ
is the cosine of the angle between the wavemode k and the line of sight and f is
the logarithmic derivative of the growth factor. For Pθ, the 1-loop correction due to
primordial NG is identical to Eq.(13) provided F2(k1,k2) is replaced by the kernel
G2(k1,k2) = 3/7 + µ(k1/k2 + k2/k1)/2 + 4µ2/7 describing the 2nd order evolution of
the velocity divergence [58]. For Pδθ, this correction is

∆PNG
δθ (k) =

∫

d3q

(2π)3

[

F2(q,k − q) +G2(q,k − q)
]

B0(−k,q,k− q) . (36)

Again, causality implies that G2(k1,k2) vanishes in the limit k1 = −k2. For
unbiased tracers with b1 = 1, the linear Kaiser relation is thus recovered at large
scales k ! 0.01 hMpc−1 (see also [61]). For biased tracers, we still expect the
Kaiser formula to be valid, but the distortion parameter β should now be equal to

8
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Power spectrum P (k), non-Gaussian initial conditions (fNL = 100):
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FIG. 2: Measurements of the matter power spectrum, P (k), as a function of k. We show, from top to bottom, the power
spectrum B (first row) and its ratio to the no-wiggle, linear prediction (second row) for Gaussian initial conditions, the ratio
P (fNL = +100)/P (fNL = 0) (third row) and the di↵erence P (fNL = +100) � P (fNL = 0) (last row). Di↵erent columns
correspond to redshifts z = 0, 1 and 2. Short-dashed, black line indicate the tree-level PT predictions while continuous, black
lines the one-loop ones. In addition, on the second row we include the RPT prediction of [49] (at the two-loop approximation,
dot-dashed, red line for z = 0 only) and the prediction from the code halofit of [50] (dotted, green line).

For each of these sets, in each of the following figures, the upper two panels show measurements of the matter

bispectrum B (or the reduced bispectrum Q) for Gaussian initial conditions, as well as the ratio to the corresponding

tree-level expression in PT. The acoustic oscillations are removed by means of the smooth transfer function of [53].

Recall that there is no “linear” matter bispectrum for Gaussian initial conditions (but there is an initial bispectrum in

Figure 2. Measurements of the matter power spectrum, P (k), as a function of k. We show, from top to bottom, the power spectrum B
(first row) and its ratio to the no-wiggle, linear prediction (second row) for Gaussian initial conditions, the ratio P (fNL = +100)/P (fNL =

0) (third row) and the di↵erence P (fNL = +100) � P (fNL = 0) (last row). Di↵erent columns correspond to redshifts z = 0, 1 and 2.

Short-dashed, black line indicate the tree-level PT predictions while continuous, black lines the one-loop ones. In addition, on the second

row we include the RPT prediction of Crocce & Scoccimarro (2006b) (at the two-loop approximation, dot-dashed, red line) and the

prediction from the code halofit of Smith et al. (2003) (long-dashed, green line).

result of measuring the matter bispectrum for two sets of
generic configurations for which the magnitude of two sides
of the triangle (k1 and k2) is fixed while the angle ✓ between
them is varied.

For each of these sets, in each of the following figures,
the upper two panels show measurements of the matter bis-
pectrum B, or the reduced bispectrum Q, see equation (34)
below, for Gaussian initial conditions, as well as the ratio

to the corresponding tree-level expression in PT where the
acoustic oscillations are removed by means of the smooth
transfer function of Eisenstein & Hu (1998). Recall that
there is no “linear” matter bispectrum for Gaussian initial
conditions (but there is an initial bispectrum in the presence
of primordial non-Gaussianity). For sake of comparison, we
take the tree-level prediction as a reference since it is most

10

Equilateral configurations B(k, k, k) vs. k, Gaussian initial conditions (fNL = 0):
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Equilateral configurations B(k, k, k) vs. k, non-Gaussian initial conditions (fNL = 100):
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FIG. 3: Measurements of the equilateral configurations of the matter bispectrum, B(k, k, k), as a function of k. We show,
from top to bottom, the matter bispectrum B (first row) and its ratio to the no-wiggle tree-level prediction (second row) for
Gaussian initial conditions, the ratio B(fNL = +100)/B(fNL = 0) (third row), the di↵erence B(fNL = +100) � B(fNL = 0)
(fourth row) and the combination [B(fNL = +100)+B(fNL = �100)�2B(fNL = 0)]/2 (last row). Di↵erent columns correspond
to redshifts z = 0, 1 and 2. Short-dashed, black line indicate the tree-level PT predictions while continuous, black lines the
one-loop ones. In addition, on the second row we include the fitting formula of [21] (long-dashed, green lines).

Figure 3. Measurements of the equilateral configurations of the matter bispectrum, B(k, k, k), as a function of k. We show, from

top to bottom, the matter bispectrum B (first row) and its ratio to the no-wiggle tree-level prediction (second row) for Gaussian initial

conditions, the ratio B(fNL = +100)/B(fNL = 0) (third row), the di↵erence B(fNL = +100) � B(fNL = 0) (fourth row) and the

combination [B(fNL = +100)+B(fNL = �100)� 2B(fNL = 0)]/2 (last row). Di↵erent columns correspond to redshifts z = 0, 1 and 2.

Short-dashed, black line indicate the tree-level PT predictions while continuous, black lines the one-loop ones. In addition, on the second

row we include the fitting formula of Scoccimarro & Couchman (2001) (long-dashed, green lines).
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Figure 7: As Fig. 2, but normalized to the Padé improved three-loop result with
kernel Kpade

02 (blue diamonds). For comparison we show in addition Padé improved

three-loop usingKpade
11 (magenta diamonds), and the Padé improved two-loop with

the kernel Kpade
01 (green dotdashed line).

In Figs. 2 and 3, we show the results obtained using the Padé kernel Kpade
02

together with the subtracted SPT contributions up to one-, two- and three-
loop, respectively (blue dashed and dot-dashed lines and blue diamonds – we
refer to them as Padé improved one-, two- and three-loop results in the follow-
ing). We observe that the first three orders of this modified loop expansion
exhibit a behavior that is much less divergent than without the Padé resum-
mation. The improvement in convergence can be seen in some more detail in
Fig 7, where we normalize the y-axis to the Padé improved three-loop result
and show a ±10% range. Evidently, the Padé improved loop expansion has
significantly better convergence properties (blue lines/diamonds) than SPT
(black lines/diamonds). In particular, the difference between Padé improved
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Figure 10: Linear power spectrum (black), and the one- and two-loop corrections
in standard perturbation theory (blue and red solid lines) at z = 0. The linear
spectrum corresponds to a ΛCDM cosmology with WMAP5 parameters [26]. The
dotted lines show the asymptotic behavior at large k (see Eq. (55)), and the dashed
lines the one at small k (see Eq. (56)).

Concerning the low k case, from the symmetries of the integrand in (83)
and its behavior at large momenta, one expects the power spectrum to behave
as

Pn−loop(k) ∝ k2PL(k)

∫ ∞

0

dqPL(q) σ2n−2
l (q) . (59)

As in the previous case, the important expansion parameter for perturbation
theory is related to the quantity σ2

l .
We have checked the previous asymptotic behavior by computing the

power spectrum numerically up to two loops in an Einstein-de Sitter cosmol-
ogy (taking into account only the growing mode). The results are displayed
in Fig. 10. We cross-checked our numerical results for the power spectrum
with the RegPT code [26] for momenta where the latter is available. As
can be seen in Fig. 10, the asymptotic expressions (56) and (55) agree with
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Figure 18. BAO in the power spectrum measured from the reconstructed
CMASS data (solid circles with 1� errors, lower panel) compared with un-
reconstructed BAO recovered from the SDSS-II LRG data (solid circles
with 1� errors, upper panel). Best-fit models are shown by the solid lines.
The SDSS-II data are based on the sample and power spectrum calculated in
Reid et al. (2010) and analysed by Percival et al. (2010); it has been shifted
to match the fiducial cosmology assumed in this paper. Clearly the CMASS
errors are significantly smaller than those of the SDSS-II data, and we also
benefit from reconstruction, reducing the the BAO damping scale.

Figure 19. A plot of the distance-redshift relation from various BAO mea-
surements from spectroscopic data sets. We plot D

V

(z)/r
s

times the fidu-
cial r

s

to restore a distance. Included here are this CMASS measurement,
the 6dF Galaxy Survey measurement at z = 0.1 (Beutler et al. 2011), the
SDSS-II LRG measurement at z = 0.35 (Padmanabhan et al. 2012a; Xu
et al. 2012; Mehta et al. 2012), and the WiggleZ measurement at z = 0.6
(Blake et al. 2011a). The latter is a combination of 3 partially covariant data
sets. The grey region is the 1 � prediction from WMAP under the assump-
tion of a flat Universe with a cosmological constant (Komatsu et al. 2011).
The agreement between the various BAO measurements and this prediction
is excellent.

Figure 20. The BAO distance-redshift relation divided by the best-fit flat,
⇤CDM prediction from WMAP (⌦

m

= 0.266, h = 0.708; note that
this is slightly different from the adopted fiducial cosmology of this paper).
The grey band indicates the 1 � prediction range from WMAP (Komatsu
et al. 2011). In addition to the SDSS-II LRG data point from Padmanabhan
et al. (2012a), we also show the result from Percival et al. (2010) using a
combination of SDSS-II DR7 LRG and Main sample galaxies as well as
2dF Galaxy Redshift Survey data; because of the overlap in samples, we
use a different symbol. The BAO results agree with the best-fit WMAP
model at the few percent level. If ⌦

m

h2 were 1 � higher than the best-
fit WMAP value, then the prediction would be the upper edge of the grey
region, which matches the BAO data very closely. For example, the dashed
line is the best-fit CMB+LRG+CMASS flat ⇤CDM model from § 9, which
clearly is a good fit to all data sets. Also shown are the predicted regions
from varying the spatial curvature to ⌦

K

= 0.01 (blue band) or varying
the equation of state to w = �0.7 (red band).

place the acoustic peak at other nearby locations and particularly
at smaller scales is rejected at 8 �.

Fig. 18 repeats this comparison with the power spectrum from
the SDSS-II LRG analysis presented in Reid et al. (2010) and Per-
cival et al. (2010). This analysis did not use reconstruction, but one
can see good agreement in the BAO and significant improvement
in the error bars with the CMASS sample.

In Fig. 19, we plot D
V

(z) constraints from measurements of
the BAO from various spectroscopic samples. In addition to the
SDSS-II LRG value at z = 0.35 (Padmanabhan et al. 2012a) and
the CMASS consensus result at z = 0.57, we also plot the z =

0.1 constraint from the 6dF Galaxy Survey (6dFGS) (Beutler et al.
2011) and a z = 0.6 constraint from the WiggleZ survey (Blake
et al. 2011a). WiggleZ quotes BAO constraints in 3 redshift bins,
but these separate constraints are weaker and there are significant
correlations between the redshift bins. We choose here to plot their
uncorrelated data points for 0.2 < z < 1.0. Each data point here is
actually a constraint on D

V

(z)/r
s

, and we have multiplied by our
fiducial r

s

to get a distance.
As described further in Mehta et al. (2012), the WMAP curve

on this graph is a prediction, not a fit, assuming a flat ⇤CDM cos-
mology. For each value of ⌦

m

h2 and ⌦

b

h2, one can predict a sound
horizon, and the angular acoustic scale measured by WMAP plus
the assumptions about spatial curvature and dark energy equation
of state then provide a very precise breaking of the degeneracy be-
tween ⌦

m

and H0 and hence a unique D
V

(z)/r
s

. Taking the 1�
range of ⌦

m

h2 and ⌦

b

h2 produces the grey band in Fig. 19. There
is excellent agreement between all four BAO measurements and the
WMAP ⇤CDM prediction.

c
� 2011 RAS, MNRAS 000, 2–33

Anderson et al. 1224 L. Anderson et al.

H
0

w
0

 

 

40 50 60 70 80 90 100
−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

CMB+CMASS

CMB+LRG

CMB

wCDM

Figure 24. 68 per cent contours for H0 vs w in the wCDM cosmological
model. As in Fig. 23, addition of the BAO data break the degeneracy in
the CMB data. The differences in the two are due to the different redshift
dependence of dark energy and curvature.
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Figure 25. 68 per cent contours for H0 vs ⌦K in the oCDM cosmologi-
cal model comparing different datasets. The SNe data are less effective at
constraining curvature, given its subdominance at low redshifts.

CosmoMC (Lewis & Bridle 2002) Markov Chain Monte Carlo sam-
pler to map the posterior distributions of these parameters. Our
BAO distance constraints are parameterised as described above as
a measurement on D

V

/r
s

at z = 0.57; we augment these with the
z = 0.35 measurement from Padmanabhan et al. (2012a) as well
as the 6dF measurement at z = 0.106 (Beutler et al. 2011). These
measurements have very little overlap in redshift and cover differ-
ent angular patches, and we treat them independently. We do not
include the WiggleZ measurements (Blake et al. 2011a,b) given
the significant overlap with the sample presented here. However,
as discussed in the previous section, the WiggleZ measurements
agree very well with the distances derived in this work. In addi-
tion to these BAO measurements, we include observations of the
temperature and polarization fluctuations in the cosmic microwave
background (CMB) by the WMAP satellite (Komatsu et al. 2011),
as well as measurements of the expansion history by the 3-year
Supernova Legacy Survey (Conley et al. 2011) and local measure-
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Figure 26. 68 per cent contours for H0 vs w in the wCDM cosmological
model comparing different datasets. Contrast this with Fig. 25; the smaller
redshift lever arm of the BAO data makes them less sensitive to variations
in the equation of state.
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Figure 27. 68 per cent contours for w0 vs ⌦K in the owCDM cosmolog-
ical model for CMB+LRG+CMASS+SN (shaded red), CMB+SN (dashed
blue), and CMB+LRG+CMASS (dashed black) datasets. Note the relative
orthogonality of the contours – the BAO data are very effective at constrain-
ing curvature, while the SNe data constrain the equation of state. Combining
the two yield tight constraints both on ⌦

K

and w0.

ments of the Hubble constant by Riess et al. (2011). We summarise
the data sets used in Table 3.

We summarise our estimated cosmological parameters and
their uncertainties for different assumptions about the background
cosmology in Table 4. The discussion below highlights particular
cross-sections through this space of models and parameters, fo-
cusing on comparisons between the LRG and CMASS samples as
well as comparisons between the cosmological constraints from the
BAO and supernova data.

The most restricted model we consider (denoted ⇤CDM) is
a ⇤CDM cosmology with no spatial curvature; the dark energy is
assumed to be a cosmological constant with w = �1. As is clear
from Fig. 22, this model is already highly constrained by the CMB
through a combination of constraints on the physical matter den-
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in the w0waCDM cosmolog-
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prior on w
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as follows: �3.0 6 w
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6 2.0. Compare the overlaps in this
case with Fig. 27; the constraints from the BAO and SNe are less comple-
mentary.
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as follows: �3.0 6 w
a

6 2.0.

sity ⌦

m

h2 and the distance to the last scattering surface. However,
the current WMAP data cannot fully separate ⌦

m

and h, leading
to an uncertainty in both of these measurements along the direction
of constant ⌦

m

hn, where n ⇠ 3 (Percival et al. 2002). Adding a
single low redshift distance measurement, from either the LRG or
CMASS data, significantly reduces this uncertainty. The similar er-
rors of the two BAO distances lead to similar constraints on H0:
±1.2 kms�1Mpc�1 for the LRG sample and ±1.3 kms�1Mpc�1

for the CMASS sample (a 1.7 per cent measurement). Combining
these reduces this error to ±1.0 kms�1Mpc�1 (a 1.4 per cent mea-
surement), a reduction by ⇠

p

2 (Table 4).
Allowing the curvature or w0 (for a constant equation of state)

to vary (denoted oCDM and wCDM respectively) opens up a de-
generacy in the ⌦K/w0 � H0 plane when only the CMB data are

considered (Figs. 23 and 24). This degeneracy is broken by the in-
troduction of a single distance measurement, as one might have
expected from Fig. 20. The larger degeneracy in ⌦K � H0 and
the subsequently tighter constraints from the BAO measurements
compared to w0 �H0 results from the different redshifts at which
curvature and dark energy become important. The BAO and CMB
measurements are connected through the sound horizon and curva-
ture has the dominant effect on this lever arm. This effect is visually
apparent in Fig. 20, where the effect of curvature is mostly an offset
in the distance-redshift relation (over the redshifts for which we are
sensitive), while changing w0 results in a non-trivial change to the
shape of the distance redshift relation. This result also explains the
difference in the improvement when the LRG and CMASS samples
are combined. The two samples do not have a wide enough lever
arm to improve the constraints on H0 in the wCDM case. By con-
trast, for the oCDM case, the errors in H0 drop by ⇠ 25 per cent
from the LRG only case.

For both these cosmological models, one can also compare
the constraints from the SN data with those from the BAO data
as shown in Figs. 25 and 26. The qualitative difference between
the SN and BAO distance ladders is that while the SN data are
a regular distance ladder, building out from low redshift to high
redshift, the BAO are an “inverse” distance ladder, calibrated at the
CMB and extending down to low redshift. The SN therefore only
weakly constrain the curvature (Fig. 25) and are more sensitive to
w0, with the reverse being true for BAO. This effect is reflected
in Figs. 25 and 26. The constraints on curvature are significantly
improved by the BAO data, and they do not improve significantly
upon the addition of the SN data. For the wCDM case, while the
BAO measurements have lower constraining power, their different
redshift dependence gives them a different degeneracy direction to
the SN, resulting in improved constraints. These trends are repeated
when we consider two parameter models of the expansion history:
owCDM (Fig. 27) and w0wa

CDM (Fig. 28), with the error ellipses
being more orthogonal when the curvature is allowed to vary.

None of the individual probes are currently sufficiently sen-
sitive to constrain the combination of ⌦K, w0 and w

a

. We there-
fore combine the SN and BAO data to obtain constraints on these
models (Fig. 29). This cosmological model is also the one recom-
mended by the Dark Energy Task Force (Albrecht et al. 2006) as
the baseline to compare different dark energy experiments. They
recommend using the inverse of the area of the 95 per cent error
ellipse in the w0 � w

a

plane as a “Figure of Merit” (FoM) for the
experiment. Our results (CMB+LRG+SN+CMASS) yield a FoM
of 14.4, compared to a FoM of 11.5 (CMB+LRG+SN) reported by
Mehta et al. (2012); the improvement driven by the inclusion of the
higher precision BOSS measurement is clear.

Finally, as was discussed extensively in Mehta et al. (2012),
the combination of the SN and BAO distances allows one to transfer
the CMB distance scale down to the local Universe and constrain
H0. Fig. 30 demonstrates that the resulting value of H0 is robust
to changes in assumed cosmological model. While the difference
between the inferred value of H0 from these data and the direct
measurement of Riess et al. (2011) is not statistically significant in
these data (⇠ 1�), they may be brought into better agreement by
adding an additional relativistic energy density component equiva-
lent to 4.26 ± 0.56 neutrino species, instead of the canonical 3.04
(see e.g. Mehta et al. 2012 for more details on the mechanism).
Improvements in both data sets in the future will elucidate if the in-
troduction of new physics is warranted or if the explanation is more
mundane.
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