

Comparison with beam data and development plans for SixTrack

R. Bruce on behalf of collimation team, FLUKA team

- Background on present SixTrack
- Comparison with LHC beam data
- Perspective for future development

SixTrack with collimation: Motivation

- LHC has unprecedented stored beam energy of 362 MJ (design). Max achieved in Run 1: 146.5 MJ. For HL: ~700 MJ!
- A tiny beam loss could quench a superconducting LHC magnets
- Efficient collimation is of fundamental importance to guarantee safe and stable running conditions
- Need to understand in detail at the design stage the expected level of leakage to the cold aperture for different optics/layouts/settings of collimators
- Simulation tool including the multi-turn tracking and the scattering in collimators needed

SixTrack with collimation: history

- SixTrack: 6D thin-lens symplectic element-by-element tracking developed by F. Schmidt for long term tracking in high energy rings.
- Used initially for dynamic aperture studies. Includes multipoles to high order
- SixTrack extended for collimation studies (thesis G. Robert-Demolaize 2003)
 - Including K2 scattering routine (Jeanneret and Trenkler) in collimators
- SixTrack + K2 used to design the present LHC collimation system
- Now LHC is built. how do the simulations compare with actual data?

Setup of benchmarks

- With LHC beam data, we can cross-check the predictions of SixTrack
 - test case: 2011 machine, 3.5 TeV, β *=1.5m, relaxed collimator settings
- Comparing simulations to LHC BLM data
- Considering qualification loss maps for comparisons of betatron cleaning
 - in physics, loss distribution e.g. at TCTs dominated by collision debris
 - Sharing between momentum and betatron halo (IR3/7) hard to disentangle
- First results presented at IPAC13 selected for oral presentation

SIMULATIONS AND MEASUREMENTS OF CLEANING WITH 100 MJ BEAMS IN THE LHC

R. Bruce*, R.W. Assmann, V. Boccone, C. Bracco, M. Cauchi, F. Cerutti, D. Deboy, A. Ferrari, L. Lari,
A. Marsili, A. Mereghetti, E. Quaranta, S. Redaelli, G. Robert-Demolaize, A. Rossi, B. Salvachua,
E. Skordis, G. Valentino, T. Weiler, V. Vlachoudis, D. Wollmann, CERN, Geneva, Switzerland

Qualitative comparison

- Excellent qualitative agreement
- Simulation predicts all important cold loss location
- Quantitatively, significant differences → shower and BLM response not accounted for
- Machine imperfections not included

Machine imperfections

- Details on SixTrack imperfection models given in talk A. Marsili
- New study since IPAC (work in progress): Updated machine imperfections
- Considering several types of random imperfections at collimators

- Random magnetic errors create realistic errors on beta function, dispersion and betatron phase
- Random misalignments/kicks create residual closed orbit and changes dispersion
- Using orbit correctors to (partially) correct residual orbit with Mikado

FLUKA shower simulations

- Previous plot: Comparing distribution of lost primary protons from simulation with measured BLM signals
- For a quantitative comparison, need to simulate shower development between primary loss and the BLM
- FLUKA simulations performed for some selected locations to obtain BLM response, i.e. BLM signal per lost nearby proton at selected locations:
 - TCTs (E. Skordis et al., talk in collimation working group 2013.05.06)
 - IR7 (F. Cerutti, E. Skordis et al., talks in 2011 and 2013 Collimation reviews)
- For comparison with measurements:
 - FLUKA result for perfect machine scaled up by increase factor from SixTrack of nearby losses when imperfections are introduced
 - Measurements averaged over all relevant 2011 loss maps (considering the order in which the resonance was crossed in the two planes)

2011 results including FLUKA BLM response: IR7 DS

- 2011 simulations (F. Cerutti et al). Re-tracking single diffractive events
- Shower from the straight section not accounted for
- 2011 FLUKA geometry recent updates includes more details

Simulated/measured BLM signals in 2013 quench test

- 2013 quench test (collimators more open than during standard operation) simulated with SixTrack + FLUKA. Perfect machine simulated
 - Imperfections expected to improve agreement in DS
- Energy deposition results shown in 2013 collimation review (E. Skordis et

al.) and in Daresbury (F. Cerutti et al.)

 With updated geometry and accounting for shower from LSS

Status of comparisons with measurements

- Excellent quantitative agreement in LSS7. Agreement of about a factor 2-3 at highest BLMs in IR7 DS and a factor 5 at the TCTs
 - Good result considering all uncertainties and that the measurements vary over 7 orders of magnitude.
 - Significant impact of unknown imperfections.
 - Uncertainty in primary loss distribution
 - Intrinsic uncertainties in simulations e.g. scattering physics and tracking
 - FLUKA simulations of other losses with very well-defined primary loss (e.g. wire scanner) have shown better agreement
 - Some effects still to be quantified, e.g. effect on optics and impact parameter from crossing 3rd order resonance (change in loss map expected to be small)
- In spite of several uncertainties, present SixTrack works rather well.
 - Used to design the present collimation which has performed extremely well
 - Found uncertainties should be kept in mind when simulating HL
- Still, there is room for improvement!

Development areas

- SixTrack workshop held in June a lot of ongoing work! https://indico.cern.ch/conferenceDisplay.py?confld=260066
- Main categories:
 - Functionality to simulate new physics cases
 - Physics models
 - Scattering
 - Tracking
 - Usability, outputs, bug fixes

- Asynchronous dumps (L. Lari talk later!)
- Heavy ion collimation (P. Hermes just started)
- Crystals (D. Mirarchi, V. Previtali)
- Momentum collimation (E. Quaranta)
- Electron lens (V. Previtali)
- Tune modulation element (V. Previtali)
- Crab cavities (J. Barranco, B. Rendon, F. Bouly)

Physics models

- Scattering in collimators
 - Updates of present K2 (C. Tambasco, B. Salvachua)
 - FLUKA ongoing work in EN-STI on FLUKA-SixTrack coupling (see talk by A. Lechner)
 - Scattering models in other codes
 - Merlin (see talk J. Molson). Could be "easily" ported to SixTrack?
 - BDSIM + Geant 4 (see talk L. Nevay)
 - With many parallel studies ongoing: important to perform inter-code comparisons.
 - For more details on scattering routines, see talk later by J. Molson
- Tracking
 - Use of exact drift Hamiltonian and other projects (R. De Maria, M. Fjellstrom)

Summary

- SixTrack with collimation used to design present LHC collimation system
 - Collimation worked extremely well in Run 1
- The running machine allows comparison with measurements
 - All important measured loss locations are found in SixTrack loss maps excellent qualitative agreement
 - For a quantitative comparison, need to simulate shower to BLMs done with FLUKA for some selected BLM locations
 - Excellent quantitative agreement in IR7 LSS. Factor 2-3 agreement in IR7 DS and factor 5 at TCTs (much further away from primary loss)
 - Quantitative agreement is acceptable considering all uncertainties and the 7 orders of magnitude found in measurements
- Development of SixTrack ongoing in several areas
 - New physics cases
 - Physics modeling
 - Bug fixes / output, usability