FLUKA for the LHC (models and applications) & prospects of integrated FLUKA/Sixtrack simulations

<u>A. Lechner</u> on behalf of the CERN FLUKA team Thanks to everybody who provided some input

3rd Joint HiLumi LHC-LARP Annual Meeting Nov 15th, 2013

・ロト ・ 戸 ・ ・ ヨ ・ ・

LHC beam-machine interaction studies: from beam losses to secondary shower description

FLUKA is the tool regularly used at CERN to perform LHC beam-machine interaction simulations in the context of

- machine protection
- collimation
- high-luminosity upgrade
- design studies
- radiation to electronics (R2E project)
- activation
- ..

This talk:

- a brief overview of LHC FLUKA geometry models and application examples
- prospects of integrated FLUKA/Sixtrack simulations

Types of beam losses in the LHC simulated with FLUKA – both, normal and accidental

- luminosity production in experiments
- halo collimation
- injection failures
- asynchronous beam dump
- residual gas in vacuum chamber
- dust particles falling into beam

• ..

(日)

Nov 15th, 2013 2 / 21

Examples of LHC FLUKA geometry models and applications

2 Prospects of integrated FLUKA/SixTrack simulations

3 Summary and conclusions

・ロト ・回 ト ・注 ト ・注

Geometry model of experimental insertions: IR1/5 (high-lumi experiments)

LineBuilder

- Python tool for creating FLUKA geometries of accelerator lines based on lattice described in TWISS files
- Regularly used for LHC applications

LineBuilder implemented by A. Mereghetti

Geometry model of experimental insertions: IR2/8 (lower lumi, but injection regions)

・ロト ・ 日 ト ・ 日 ト ・

Geometry model of collimation insertions: IR7 and adjacent DS

Geometry model of LHC arc

Optics implementation in FLUKA geometries: orbit accuracy

Generally we achieve an agreement with MAD-X better than few μm over several hundred meters of beamline.

Figure: Orbit verification FLUKA vs MAD-X, horizontal (top) and vertical (bottom) plane in vicinity of MBXWT.1L2. MBXWT.1L2 applies a kick in both planes since the magnet is tilted.

Validation I: BLM response due to losses induced by wire scanner (p@3.5 TeV)

- First years of LHC operation yielded opportunity to perform validation against dose measurements
- Wire scanner test (by CERN BLM team): controlled benchmarking conditions, allowing for an absolute comparison → # of impacting protons well known:

N_{prot} impact = N_{beam}f_{LHC} d_{wire} / v_{wire}

 Figure bottom right: comparison of calculated and measured BLM pattern, agreement within 30%!

FLUKA geometry (downstream of Q5)

Distance to IP4 (m)

Validation II: BLM response due to collision debris from IP5 (p03.5 TeV)

- Another validation study, this time concerning the collision debris from CMS
- Simulation of p-p collisions with DPMJET ٠
- Figure bottom right: Comparison of calculated ٠ and measured BLM pattern along the inner triplet in IR5, generally good agreement!
- Note: comparison incorporates CMS luminosity ٠ measurement and 73.5 mb p-p cross-section (from TOTEM)

FLUKA study: L.S.Esposito et. al.

BLM dose [m Gy/collision] 16-10 30 50 40 Distance from IP [m

le-09

Nov 15th. 2013 10 / 21

Unexpected beam losses: hunting UFOs

 Beam losses due to proton interactions with micrometer dust particles in the vacuum chamber,

UFOs = Unidentified Falling Objects

- During past years of operation, UFOs have caused several beam dumps
- Figure bottom right: by analysing BLM pattern, FLUKA studies allowed to determine UFO locations around IR2 injection kickers (MKIs)

BLM signals due to coll. leakage (DS): SixTrack(©collimation team)+FLUKA (p@4 TeV)

sign

- Machine study: collimation quench test@4 TeV was performed by collimation team in IR7 (see ATS note below)
- SixTrack loss distribution (input to FLUKA) calculated by collimation team
- Corresponding FLUKA shower calculations were performed, spanning over several hundred meters (from TCPs until dispersion suppressor)
- BLM signal pattern nicely reproduced (good absolute agreement in warm section!), see Roderik's talk in the same workshop

Distance to IP7 (m)

CERN-ATS-Note-2013-XXX MD

4 June 2013 Belen.Salvachua@cern.ch

Results proton collimation quench tests MD at 4 TeV

B.Salvachua, R.Bruce, M.Cauchi, D.Deboy, W.Hofle, E.B.Holzer, D.Jacket, L.Lari, E.Nebot, D.Mirarchi, E.Quaranta, S.Redaelli, M.Sapinski, R.Schmidt, G.Valentino, D.Valuch, J.Wenniger, D.Wollmann, M.Zerlauth, CERN, Geneva, Switzerland

Keywords: LHC, collimation, quench, protons, 4TeV

Summary

12 / 21

Examples of LHC FLUKA geometry models and applications

Prospects of integrated FLUKA/SixTrack simulations

3 Summary and conclusions

<ロト <部ト < 目と < 目</p>

Online coupling of FLUKA with optics tracking codes like SixTrack

What can the coupling provide?

 efficient simulation of beam-machine interactions in a realistic multi-turn approach with a state-of-art account of physics processes

Some motivation behind coupling FLUKA with tracking codes:

- letting each code do what it is designed for (tracking *vs* interactions)
- avoiding simplifications in the modelling of physics processes, in particular for complex interactions like single diffractive scattering or ion interactions
- limiting human intervention (e.g. no need of manually checking files, units, etc) and hence making the overall process less error-prone

Proton Feynman X distribution: comparison of FLUKA (single diffr., single diffr. + inelastic,) and SixTrack (A. Ferrari and V. Vlachoudis, 2009)

Status

- First implementation in 2009 to couple FLUKA with ICOSIM (SPS scraper simulations)
- Meanwhile, coupling with SixTrack was completed (in close contact with SixTrack authors and librarian), recently first feasibility test of integrated LHC simul.

\rightarrow anticipate further development and application together with collimation team __ $\ensuremath{\circ}$ $\ensuremath{\circ}$

- cross sections are energy dependent and ionization plays for ions a not negligible role in changing their energy along their path in matter
- energy loss evaluation needs a treatment significantly more sophisticated than the Bethe formula adopted in ICOSIM (e.g. including Mott corrections as well as pair production)
- moreover, Landau fluctuations have to be taken into account
- it's not enough to know the probability for generating a given fragment, since its momentum is altered in the interaction; this makes fragments nominally far from the beam rigidity to fall in reality inside the machine acceptance (e.g. tritium)
- all fragments can reinteract in the collimator material
- \rightarrow the coupling would intrinsically overcome all these issues

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

How does it work?

Implementation:

- one process of tracking program
- one FLUKA process
- online communication through a network port (dedicated library and message passing protocol implemented on top of TCP/IP sockets)
- take over from each other at geometry interfaces

Passing particles from one program to the other (and back):

- a portion of the TWISS sequence is labelled for transport in FLUKA
- primary particles are transported turn by turn by the tracking code throughout the lattice
- whenever they reach a labelled section, they are transferred to FLUKA for transport in its 3D geometry and for simulating the interaction with accelerator components
- at the end of a FLUKA insert, they are sent back to the tracking program

How does it work?

Some features of the FLUKA inserts:

- multiple inserts can be used per setup
- may contain geometries of (nearly) any complexity
 - through powerful FLUKA combinatorial geometry

- in particular, one may employ any material
 - e.g. for collimators there is virtually no effort needed to move to new materials
- time-dependent geometries are supported, i.e. geometries may change turn by turn (e.g. interesting for scrapers)

Application to the LHC: limited by CPU time?

FLUKA transport in inserts:

- FLUKA simulations are sometimes perceived to be very CPU-intensive
 - Can certainly be true e.g. for detailed energy deposition studies for large LHC geometries and TeV beam energies where one applies
 - $\times\,$ low secondary production and transport cuts down to MeV energies or less (for a detailed description of shower development, particularly e⁻/e⁺, γ),
 - × and many fine-grained scoring meshes (to calculate point-like quantities necessary to estimate e.g. quench levels),
 - However, it is not true if one applies high cuts and/or if one switches off unnecessary physics processes (e^-/e^+ , γ prod. and transport, generation of all inelastic collision products and their transport)
- When applied to the LHC, the coupling is meant to work in the latter mode
 - One focusses on particles which can still propagate in machine (in order to create a lossmap) and not in the local shower development

FLUKA/SixTrack communication:

 Online communication through a network port means no useless I/O via files and hence saves considerable CPU time

First CPU benchmarks on FLUKA cluster with 10⁶ particles

Test: Get a loss map *à la* Sixtrack *Test setup:*

- LHC beam 1, nominal machine
- 39 collimators simulated via FLUKA inserts
- p@7 TeV
- halo of 0.0015 σ width, above 6.3 σ

settings \rightarrow not meant as test of physics results but as a feasibility study wrt CPU time

FLUKA physics settings:

- 1 TeV cut
- no simulations of e^-, e^+ and γ
- single scattering
- if deep inelastic nuclear interaction occurs, particle is dumped (no secondaries transported)
- if single diffr. interaction occurs, information about interaction is stored in file and particle is kept for further tracking

Cumulated CPU time for $10^6\,$ particles tracked over max. 100 turns (steps are due to the time delay on the queue system)

CPU times:

- Simulation of 500 jobs, each of which tracks 2000 particles over (max.) 100 turns
- Average CPU time per job was ${\sim}10~\text{sec}$
- With some time overhead due to queue system, the test took roughly a quarter of an hour for 10^6 particles on one CPU
 - \rightarrow 6 million partices would take roughly 1.5h

Examples of LHC FLUKA geometry models and applications

2 Prospects of integrated FLUKA/SixTrack simulations

3 Summary and conclusions

<ロ> <同> <同> < 回> <

FLUKA is commonly used at CERN for beam-machine interaction simulations

- a comprehensive set of FLUKA geometry models of various LHC regions have been implemented over years (continously improving)
- first years of operation allowed to validate FLUKA simulations in the TeV energy regime against beam loss monitor measurements
- for controlled loss scenarios (e.g. wire scanner test 2010, ADT quench test 2013 (not shown)), we were able to achieve an absolute agreement better than 30% in BLMs downstream of loss location (Note: accurate positioning of BLM in simulations can be crucial)

Prospects of integrated FLUKA/SixTrack calculations

- Offers realistic multi-turn simulations including sophisticated physics models (particularly for single diffractive scattering and ion interactions)
- CPU time appears not to be an issue for application to LHC (as shown in first feasibility test)
- ullet ightarrow anticipate further development and application together with collimation team

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・