The ALICE TPC Upgrade with GEMIs

C. Garabatos

The ALICE TPC

The ALICE TPC

A TPC has no
 redundancy
 Low event rate
 (compared to no-TPC
 experiments) but high hit
 rate

About 90 m³ of gas 2010: Ne-CO₂-N₂ (90-10-5) 2011-2013: Ne-CO₂ (90-10) 2014: Ar-CO₂ (90-10) Drift voltage 100 kV for 94 μs drift time 72 MWPCs with 557 768 readout pads The main tracking device of the ALICE barrel Particle ID through dE/dx $-0.9 < \eta < 0.9$

Current TPC performance

Combined TPC-ITS momentum resolution is $\sigma(p_T)/p_T \approx 1\%$ at 1 GeV/c (measure down to ~100 MeV/c) Increasing to $\approx 5\%$ at 50 GeV/c

98% tracking efficiency in pp 1-3% lower for central Pb-Pb events

The Gating Grid in MWPC

Run3: 50 kHz Pb-Pb

- From <1 kHz to 50 kHz (10 nb⁻¹)
 - Heavy quarks, quarkonia (low p_T), dileptons, exotica
- Continuous readout: no trigger, no gating

 → space charge distortions of order
 of 1 m → not an option
- Current TPC doesn't do the job

Radial and z distortions as a function of r and z for 50 kHz Pb-Pb collisions with non-gated MWPC. Note that drift field is 400 V/cm

In addition, space-charge in the amplification region

- Maximum particle rate of 40-100 kHz/cm² → sizeable gain drop → deterioration of dE/dx
- Replace MWPCs with GEMs
 - intrinsic ion blocking
 - high rate capability
 - allows for a factor 3 lower gain
 - new FEE needed!
- Keep Field Cage and everything else

ALICE Enthusiastic response of the community

- ALICE TPC Upgrade Collaboration
 - Copenhagen, Helsinki, Frankfurt, Heidelberg, Munich, Munich, Tuebingen, Worms, Darmstadt, Tokyo, Mexico City, Bergen/Tonsberg, Bergen, Cracow, Bucharest, Bratislava, Lund, New Haven, Budapest
- Strong support by RD51 at CERN

Green: new in the TPC project

R&D issues with GEMs

- Most GEM detectors are triple stacks operated with a standard HV configuration with a standard gas
 - IBF is several %, OK for position resolution
- A different configuration is necessary for minimizing IBF
 - Study IBF: goal is below 1%, ϵ below 20, for which distortions are ~10 cm
- Therefore stability of operation has to be redemonstrated
- dE/dx resolution has to be proven
 - maintain the current performance

Definitions: IBF = $I_{drift}/I_{anode} = (1+\epsilon)/gain$

IBF

- So, if we want to use GEMs in the ALICE TPC, we have to work on the Ion Back Flow, since the current 'intrinsic ion-blocking of GEM detectors ' is not enough
- Gas choice closely connected to this through the ion mobility
- Preferably, do not lock all operational conditions –leave some flexibility
- We don't have 15 years' time to develop a new concept

IBF and gas choice

Maximum radial and azimuthal distortions for various gas mixtures at IBF = 1%

- Baseline gas mixture is Ne-CO₂-N₂ (90-10-5) for space-charge distortion, stability, and material compatibility considerations
 - Ne-CF₄ not completely discarded
 - Ar ions are just too slow

Distortions

Left: $\varepsilon = 20$ Right $\varepsilon = 10$ Top: dr Middle: d(r ϕ) Bottom: dz

Distortions up to 20 cm (10 cm) for ϵ = 20 (10)

Average pile-up is 5, but fluctuations in event rte, track multiplicity, etc must be taken into account

- Gain in increasing order, not decreasing
- Catch ions where they are the most
- Establish asymmetric field at the place where you want to catch them
- You may try to add a 4th GEM
- You may try to use foils with lower optical transparency

	Standard	IBF
Drift Field	$0.4\mathrm{kV/cm}$	$0.4\mathrm{kV/cm}$
$\Delta U_{ m GEM1}$ Transfer Field 1	$400\mathrm{V}$ $3.73\mathrm{kV/cm}$	$225\mathrm{V}$ $3.8\mathrm{kV/cm}$
$\Delta U_{ m GEM2}$ Transfer Field 2	$365\mathrm{V}$ $3.73\mathrm{kV/cm}$	$235\mathrm{V}$ $0.20\mathrm{kV/cm}$
$\Delta U_{ m GEM3}$ Induction Field	320 V 3.73 kV/cm	$285\mathrm{V}$ $3.8\mathrm{kV/cm}$

…and if you manage, you still have to check operation stability (spark probability), gain stability (charging up, etc), energy resolution, etc

ALICE Minimising IBF: a piece of cake?

- Set up a triple GEM stack, shoot X-rays and scan all voltages and field to achieve lowest IBF
- After a few scans, reached 0.25% fantastic!

ALICE Minimising IBF: a piece of cake?

- Set up a triple GEM stack, shoot X-rays and scan all voltages and field to achieve lowest IBF
- After a few scans, reached 0.25% fantastic!

IBF dependence on rate

- Ion accumulation on top of a GEM foil produces enough space-charge to shield the electric field above from incoming ions from below, thus fakely improving IBF
- This has obviously no effect on the rate capability

Effect found to scale with the product of the charge density and the drift length
Reasonable agreement with Garfield++ simulations

Expected in the upgrade scenario: ~ 5000 fC/cm²

BF dependence on hole alignment

- IBF simulations reproduce measurements by 'tuning' the misalignment between GEM foils
- Reasonable consistency for different gases and number of GEM foils in the stack

IBF with a triple **GEM**

Not good enough

Further efforts on IBF

- Increase number of foils in the stack: 4 GEMs
- Increase the hole pitch: GEM1 and GEM3 have double the pitch (280 µm)
- Reach 0.8% IBF, and secured some flexibility
- Work in progress

☞How about the rest of the story: energy resolution, stability

Gain stability

10

510

Time (s)

- In the LHC, voltages of gaseous detectors are ramped up at the beginning of each fill (on Stable Beams)
- Then there
 are lumi
 adjustments,
 etc

0.71

0.7

440

450

460

470

480

490

500

Energy resolution, spark rate

- Preliminary energy resolution measurements show no significant deterioration when going to IBF settings and quadruple stacks
 - work in progress
- Two setups for measuring spark probability with α particles in the new configuration
 - 2000 is a moderate gain

Example for triple GEM, standard settings

Full size prototype

- Full size triple-GEM prototype of a TPC IROC to PS test beam of electrons and pions
- Measure dE/dx resolution for various voltage configurations

Single mask foils For time reasons, not the best quality

dE/dx resolution

- Only 46 pad rows considered
- dE/dx resolution measured for GEMs is equal to the expected for MWPC : performance is preserved
- Expect from simulations a slightly better performance: 10.5 % for 1 GeV pions
 - density correction to gain not applied

Test in the ALICE cavern

- Prototype installed under the beam pipe during the p-Pb period in 2013
- Scan several configurations (gains) for 'Standard' and IBF settings
- See if it holds

700 pads connected to spectroscopy electronics Signals recorded for various HV settings during all pA fills

24 **1**8 18 16 14 12 1 10 9 8 6 6 5 GEM1T GEM1B GEM2T GEM2B **GEM3T** GEM3B

Number of Trips per GEM

- Several trips occurred, and a few shorts developed
- No correlation found with beam conditions
- Correlation found with the maximum voltage applied (to GEM1T)
- These maximum voltages happened to be applied in IBF settings
 - The scaling of the transfer fields and the size of the induction gap (3 mm) resulted in these higher voltages in IBF configuration
- Foil quality

4.10.2013

- Slightly worse resolution due to the lack of a Pad Response Function in GEMs
- Near the chambers worse resolution due to low diffusion
- Effect larger at larger radii, where pads are larger; η coverage relieves this effect

Momentum resolution

- Very little deterioration for TPC stand-alone and 6 pile-up events (expected average is 5)
 - less merged clusters in the case of GEMs: lack of PRF is an advantage
- Excellent resolution achieved with the vertex constrained and the precision of the ITS; no difference between MWPC and GEM readout

Calibration strategy

- 1st step: on-the-fly calibration to 1 mm resolution and substantial data compression
 - store clusters on tracks only (compression factor >20)
- 2nd step: use information on local, instantaneous space charge distributions, and matching to outer detectors (ITS, TRD) for ultimate resolution (200 μm)

GEM QA

- A crucial issue as recognized by everybody
- Transport
- Optical inspection
 - Hole diameters and pitch distributions
- HV test of individual foils
- HV test of stack
 - gain scan
- HV test of chamber
 - gain scan, long-term irradiation test, gas tightness
- Final commissioning in TPC at surface and underground

Status and plans

- TDR to be submitted end of October 2013
- 2013-2014: design and prototyping
- 2015-2016: production of chambers and FEE
- 2017 (or 2018): installation and commissioning
 - Depending on Shutdown scenario

Conclusions

- The ALICE program for RUN3 requires an upgrade of the TPC, among other detectors
- The replacement of the TPC multi-wire proportional chambers with GEMs matches the requirements
- Extensive R&D ongoing to prove this principle, in particular low IBF (<1%) for manageable space-charge distortions
- The TPC performance shall be maintained in the 50 kHz scenario

BACKUP

57

Readout system

THE ALICE HIS OPSIGUE

I II DELECTOR DEIMINAL

Why N₂ in Ne-CO₂

 N₂ provides more and better quenching at no cost of drift time

 N₂ allows for higher transfer fields before amplification takes place, which is good for minimising IBF

Figure 5.29.: ⁵⁵Fe spectra obtained in Ar-CO₂ (90-10) (left panel) and Ne-CO₂ (90-10) (right panel).

PH Detector Seminar - The ALICE TPC Upgrade

e- π separation power with IROC prototype

All gaps 2mm

Alternative R&D: COBRA GEM

Set Hybrid Micromegas+GEM is another possibility for low IBF