

INFN

Single top Experimental summary

Luca Lista INFN – Napoli

Outline

• t channel

Cross-section

Top-antitop cross-section ratio

Differential studies

• tW channel

s channel

What will change at I4 TeV

Maria Kliò, Flickr (cc)

t channel: event selection

• 7 TeV / 8TeV requirements:

- \circ exactly one e or μ / exactly one μ
- Number of jets and b tags identify signal and control regions
 - Signal: 2 jets, 1 tag
 - Enriched of tt~ or W+jet (heavy, light) varying # of jets and tags
- \circ Jets: anti-k_T(0.5) $~\ensuremath{\text{P}_{T}}\xspace >$ 30/60 GeV, $|\eta|$ < 4.5
- Muons: $p_T > 20/26 \text{ GeV}, |\eta| < 2.1$
- Electrons: $p_T > 30 \text{ GeV}$, $|\eta| < 2.5$
- \circ m_T (W) > 40/50 GeV(µ) or ME_T > 25 GeV(e)

t channel: cross section

- Inclusive cross section measured at 7 and 8 TeV
- **7 TeV**, 1.17/1.56 fb⁻¹: three analyses combined: NN, BDT and fit to $|\eta_{j'}|$ distribution; exactly one e or μ

 $\sigma_{t-ch.} = 67.2 \pm 3.7(stat) \pm 3.0(syst) \pm 3.5(th) \pm 1.5(lumi) \text{ pb []HEP12(2012) 035]} \sigma_{t-ch.} = 64.6 \text{pb}$

• 8 TeV, 12.2 fb⁻¹: fit to $|\eta_{i'}|$ distribution in 2jets+1b-tag, signal region from reconstructed top mass. Exactly one μ

 $\sigma_{t-ch} = 80.1 \pm 5.7(stat) \pm 11.0(syst) \pm 4.0(lumi) \text{ pb [TOP-12-011]} \sigma_{t-ch.} = 87.6 \text{ pb}$

t channel: distributions

- The t-channel data sample is large enough to start studying distributions
 - $\circ \rightarrow$ differential cross sections
- Signal can be enhanced by requiring large forward jet pseudorapidity, e.g.: $|\eta_{i'}| > 2.0$

Systematic uncertainties

- Main systematics:
 - Jet energy scale, signal generator, muon efficiency, PDF, b tagging
 - Improving on the theory side is important!

e ′o
6
0
6
5.8 %
0.4~%
0.9 %
0.4~%
5.1 %
6
2.1 %
6
6
6
6
6
6
%
6
%
0.4 % 0.9 % 0.4 % 5.1 % 6 2.1 % 6 6 6 6 6 6 6 6 6 6 6 6 6

Top antitop, separately

 Top and antitop cross sections can be measured separately, based on the lepton charge [TOP-12-038]

 $u(\bar{d})$

 W^+

 $d(\bar{u})$

- Their ratio and total cross section can be determined, alternatively
- Slightly different selection with both e and μ , to optimize uncertainty on the ratio; electron channel added to the analysis
- $\sigma_{top} = 49.9 \pm 1.9(stat) \pm 8.9(syst) \text{ pb}$
- $\sigma_{anti-top}$ = 28.3 ± 2.4(stat) ± 4.9(syst) pb

Top-antitop ratio

- $u(\bar{d})$ $u(\bar{d})$ $u(\bar{u})$ $u(\bar{$
- Top-antitop ratio $R_{t/t}$ probes the different u and d content of the proton
- Potentially sensitive to PDF
- $R_{t/t} = 1.76 \pm 0.15(stat) \pm 0.22(syst)$
- Uncertainty is still large to discriminate PDF models
- Combination with ATLAS should be pursued, but measurements are available at different \sqrt{s}
- Can we achieve a better sensitivity combining some observables at √s = 7 TeV and 8 TeV (and eventually at 14 TeV)?
- ..or it is a job for PDF global fits?

Systematic uncertainties

• Systematics for top and antitop cross sections slightly different from cross section paper (electrons added, different selection)

 $u(\bar{d})$

 W^+

 $d(\bar{u})$

 In tt~ ratio some uncertainties are reduced (e.g.: b tagging, QCD), but still sizeable PDF, generator

Uncertainty source	$\sigma_{t-ch,antitop}$ (%)	$\sigma_{t-ch,top}$ (%)	$R_{t-channel}$ (%)
stat. uncertainty	\pm 8.6	± 3.9	\pm 8.8
JES,JER, and MET	± 4.9	\pm 4.2	\pm 2.6
b-tagging and mis-tag	± 4.3	± 3.7	± 0.9
backgrounds ratio	± 0.6	± 0.5	\pm 1.1
lepton reconstruction/trig.	\pm 1.9	\pm 1.8	\pm 3.6
qcd extraction	± 6.4	± 3.4	± 0.9
W+Jets, tt extraction	± 5.9	\pm 2.4	\pm 6.8
signal modeling	\pm 11.4	\pm 15.4	\pm 5.4
pdf uncertainty	± 5.8	\pm 2.8	\pm 7.5
simulation statistics	± 1.1	± 0.6	\pm 1.1
luminosity	\pm 4.4	± 4.4	-
total systematics	\pm 17.4	\pm 17.8	± 12.6
total relative uncertainty	\pm 19.4	\pm 18.3	\pm 15.3
Scale factor w.r.t. SM \pm uncertainty	$0.92{\pm}0.18$	$0.88 {\pm} 0.16$	$0.96 {\pm} 0.15$

Differential studies

- Regularized unfolding of $\cos\theta^*$ distribution removes experimental effects
- Top spin asymmetry: $A_i = 0.41 \pm 0.06(\text{stat}) \pm 0.16(\text{syst})$
- Top polarization: $P_1 = 0.82 \pm 0.12(\text{stat}) \pm 0.32(\text{syst})$

 $A_{l} \equiv \frac{1}{2} \cdot P_{t} \alpha_{l} = \frac{N(\uparrow) - N(\downarrow)}{N(\uparrow) + N(\downarrow)}$ $\alpha_{l} = I \text{ in the SM, modified in case of}$

tWb anomalous coupling

Talk by Matthias Komm later on

• First of several possible differential cross-section measurements

1000

Events / 4 GeV 009 009 008

200

g Leelee

Systematics

• Theory modeling contribute the largest uncertainties: ME/PS matching, ren./fact. scale

Systematic Uncertainty	$\Delta \sigma$ (pb)	$\frac{\Delta\sigma}{\sigma}$	
ME/PS matching thresholds	3.25	14%	1
Q^2 scale	2.68	11%	
Top quark mass	2.28	10%	
Statistical	2.13	9%	
Luminosity	1.13	5%	
JES	0.91	4%	
$t\bar{t}$ cross section	0.87	4%	
Z+jet data/MC scale factor	0.56	2%	
tW DR/DS scheme	0.45	2%	
PDF	0.33	1%	
Lepton identification	0.31	1%	
JER	0.27	1%	
B-tagging data/MC scale factor	0.20	< 1%	
$t\bar{t}$ Spin Correlations	0.12	< 1%	
Top Pt Reweighting	0.12	< 1%	
Event pile up	0.11	< 1%	
$E_{\rm T}^{\rm miss}$ modeling	0.07	< 1%	
Lepton energy scale	0.02	< 1%	
Total	5.58	24%	

Could be dropped as uncertainty: report the cross section at a given mass, and quote the slope.

Ongoing discussion with ATLAS for the combination.

s channel

- Most unfavorable cross section and signal/background
- Signal determined using a multivariate approach to increase sensitivity (BDT, 10/11 variables for $\mu/e)$
- Data/simulation agreement was checked for each variable

s channel results

- First CMS result approved by PASCOS (8 TeV, 19.3 fb⁻¹)
 - Upper limit: $\sigma_{s-ch.} < 2.1 \times SM$ cross section [TOP-13-009] exp. w/ signal exp. w/o signal $\sigma_{s-ch.} < 12.4$ (18.4, 10.5) pb muon channel $\sigma_{s-ch.} < 14.7$ (23.2, 15.4) pb electron channel
 - $\sigma_{s-ch.} < 14.7$ (25.2, 15.4) pb electron channel $\sigma_{s-ch.} < 11.5$ (17.0, 9.0) pb combined
- Sensitivity still limited ($0.9\sigma \exp, 0.7\sigma obs$), mainly by theory systematics
- Keeping under control uncertainties like renorm./factor scale (83%!!) would reduce dramatically the uncertainty (IDPLHCWG)
- Cross section determined anyway from fit to data yield ($\sigma_{s-ch.}^{SM} = 5.6pb$):

- The analysis at 7 TeV is interesting: the better S/B ratio may compensate the smaller data sample
 - ATLAS limit available at 7 TeV, 0.70 fb⁻¹: $\sigma_{s-ch.} < 26.5pb = 5.7 \times SM$ cross section [ATLAS-CONF-2011-118]

Cross section summary

- t channel and tW measured at 7 and 8 TeV
 - t channel reached 16% precision, 14% if combined with ATLAS
- s channel, upper limit at 8 TeV
 - Fit from data allows to determine the cross section, yet with poor precision so far

$|V_{tb}|$ from single top

 |V_{tb}| from cross section: determined assuming B(t→VVb)≅ |

- 7 TeV: $|V_{tb}| = 1.020 \pm 0.046(\exp) \pm 0.017(th)$ (t-ch. 4.8%) $|V_{tb}| = 1.01^{+0.16}_{-0.13}(\exp)^{+0.03}_{-0.04}(th)$ (tW-ch., 14.8%)
- $\circ 8 \text{ TeV:} |V_{tb}| = 0.96 \pm 0.08(\text{exp}) \pm 0.02(\text{th}) \quad (\text{t-ch. 8.6\%}) \\ |V_{tb}| = 1.03 \pm 0.12(\text{exp}) \pm 0.04(\text{th}) \quad (\text{tVV-ch. 12.3\%})$
- As comparison, from $B(t \rightarrow Wb)/B(t \rightarrow Wq)$ in tt~: $|V_{tb}|=1.011^{+0.018}$ (stat.+syst) (tt~ 1.7%) [TOP-12-035]
- By dropping the $B(t \rightarrow Wb)=1$ assumption single top may reach competitive precision with tt~: $|V_{tb}| \sim (\sigma_{t-ch.}/\sigma_{t-ch.}^{th}.)^{1/4}$
- Corrections from $|V_{ts}|$, $|V_{td}|$ terms should be applied properly
 - Work in progress: may be a topic for the TOPLHCWG

How does CMS compare to ATLAS?

		ATLAS	CMS
t channel $d(\bar{u})$ 7 TeV	$\sigma_{t-ch.} = 83 \pm 4(stat)^{+20}_{-19}(syst) \text{ pb}$ = 83 ± 20 pb (24%)	67.2±3.7(stat)±3.0(syst)±3.5(th)±1.5(lumi) pb = 67.2 ± 6.1pb (9.1%)	
		$R_{t/t^{\sim}} = 1.81 \pm 0.10(\text{stat})^{+0.21}_{-0.20}(\text{syst})$ = 1.81^{+0.23}_{-0.22} (12%)	-
8 TeV		σ _{t-ch.} = 95.1±2.4(stat)±18.0(syst) pb = 95.1 ± 18.1 pb (19%)	$\sigma_{t-ch.} = 80.1 \pm 5.7(stat) \pm 11.0(syst) \pm 4.0(lumi) \text{ pb}$ = 80.1±13.0 (16%)
		-	$R_{t/t\sim} = 1.76 \pm 0.15(stat) \pm 0.22(syst)$ =1.76 ± 0.27 (15%)
tW channel	7 TeV	σ_{tW} = 16.8 ± 2.9 (stat) ± 4.9 (syst) pb = 16.8 ± 5.7 pb (34%)	σ _{tW} =16 ⁺⁵ -4 pb (28%)
b 8	8 TeV	σ_{tW} = 27.2±2.8(stat)±5.4(syst) pb = 27.2 ± 6.1 pb (22%)	σ _{tW} = 23.4 ^{+5.5} - _{5.4} pb (23%)
s channel $u \rightarrow u \rightarrow$	7 TeV	σ _{s-ch} . < 26.5 pb at 95%CL (= 5.7 × SM cross section)	-
	8 TeV	-	$\sigma_{s-ch.} < 11.5 pb at 95\% CL$ (= 2.1 × SM cross section)

- Main differences (could evolve in future publications):
 - ATLS has a more conservative approach to theory systematics
 - Some instrumental systematics better under control by CMS (e.g.: b tagging)

CMS single-top workshop, Naples, 19-12-2013

Luca Lista

18

Combination with ATLAS

19

CMS single-top workshop, Naples, 19-12-2013

Luca Lista

- First single-top combination approved by both collaborations, within the TOPLHCWG
 - $\sigma_{t-ch.}$ @8 TeV = 85±4(stat)±11(syst)±3(lumi) pb = 85±12 pb
 - Combination @7 TeV dominated by CMS, not approved by ATLAS

TOPLHCWG single-top items

- Ongoing generator studies aiming at attacking theory systematics
 - Goals: move towards common theory systematic treatment in ATLAS and CMS, avoid too "conservative" (=overestimated) uncertainties and move towards the precision regime
 - Using aMC@NLO as new benchmark
 - Generator comparison was performed by Dominic Hirschbühl (ATLAS), non approved for the TOPLHCWG open session in November
- Next steps:

20

CMS single-top workshop, Vaples, 19-12-2013

Luca Lista

- Combine tW associated production, work just started
- Consider possible combination of $|V_{tb}|$, so far dominated by CMS measurement at 7 TeV
- $R_{t/t}$ measured at different \sqrt{s} so far by ATLAS and CMS
- $\circ\,$ s-channel: upper limits only, and at different $\sqrt{s}\,$

Prospects for run-ll

21

CMS single-top workshop, Naples, 19-12-2013

Luca Lista

- Life won't be easy: the present data sample has the most favorable signal-to-background ratio
 - tt~ background will increase more than single-top (gg fusion)
 - W+jets not expected to increase more (gq contribution mainly, then q~q')

• We need to use statistics in order to beat the larger background

• The s channel, in particular, will become challenging

Run II: a possible plan

- Plan for the very first data (first on fb⁻¹):
 - Measure the t channel cross section at 14 TeV ("rediscovery"), including charge ratio
 - Study top polarization and differential distributions check the agreement with the Standard Model
 - Look for deviations for SM: FCNC (tZ, tγ)
 - Measure the top mass in single-top events
 - Should be done also at 7, 8 TeV!
- With more data (10 fb⁻¹):
 - Rediscover tW

CMS single-top workshop, Vaples, 19-12-2013

Luca Lista

- Look for SM tZ, few % of t channel
- With even more data
 - Try again with the s channel may require hundreds of fb⁻¹!

Conclusions (i)

- Single-top processes have been measured in the three channel t, s and tW
 - Systematics due to signal modeling being revised in agreement with ATLAS with feedback from the theory community
- The t channel sample offers the opportunity to perform differential studies
 - Top polarization, W helicity, more to come
 - With run-II data the larger data sample will allow better precision

Conclusions (ii)

24

CMS single-top workshop, Vaples, 19-12-2013

Luca Lista

- tW has been observed, though the background contamination is high
 - Probably hard to extract differential distributions, due to the large background
- s channel is tough, we need to attack theory systematics and add 7 TeV data to gain in significance
- Run II will open the way to a larger data sample at the cost of a larger tt~ background, that will make some measurements challenging, in particular the s channel

Backup

• The following material will be covered by other talks is here just as reference

Differential measurements and top polarization

SM: top ~100% polarized along light quark

Wtb coupling structure encoded in kinematics of decay products (SM: V-A coupling structure)

- Selection very similar to cross section measurement
- Extract distribution of angle between light quark & lepton in the top-quark rest frame:

$$\cos \theta^* = \frac{p_\ell^* \cdot p_{\ell \mathbf{q}}^*}{|\vec{p_\ell^*}| \cdot |\vec{p_{\ell \mathbf{q}}^*}|}$$

• Determine the asymmetry

a

И

g **9999**

26

CMS single-top workshop, Vaples, 19-12-2013

Luca Lista

$$A = \frac{N(\cos\theta^* > 0) - N(\cos\theta^* < 0)}{N(\cos\theta^* > 0) + N(\cos\theta^* < 0)}$$

• Probe coupling structure

W helicity

• W helicity from top decay studied from $\cos\theta_l^{[\dagger]}$ distribution [$\dagger^{\dagger} \theta_l^*$ = angle between lepton in W rest frame and the W in top rest frame.

$$\rho(\cos\theta_{\ell}^{*}) = \frac{1}{\Gamma} \frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta_{\ell}^{*}} = \frac{3}{8} (1 + \cos\theta_{\ell}^{*})^{2} F_{R} + \frac{3}{8} (1 - \cos\theta_{\ell}^{*})^{2} F_{L} + \frac{3}{4} \sin^{2} \frac{*}{\ell} F_{0}$$

- Single-top selection provides a sample enriched in single-top event, where the tt~ fraction is anyway sizable, in particular at 8 TeV
- Orthogonal selection w.r.t.W helicity analysis in tt~, suitable for a possible combination

W helicity

- Preliminary result with **7+8 TeV** (1.14fb⁻¹ + 5.3fb⁻¹, μ only) [TOP-12-020]:
 - $F_L = 0.293 \pm 0.069(stat) \pm 0.030(syst)$
 - $F_0 = 0.713 \pm 0.114(stat) \pm 0.023(syst)$
 - $F_R = -0.006 \pm 0.057(stat) \pm 0.027(syst)$
- Limits set on anomalous tWb couplings
 - $\mathcal{L}_{tWb}^{anom.} = -\frac{g}{\sqrt{2}}\bar{b}\gamma^{\mu}(V_LP_L + V_RP_R)tW_{\mu}^{-} \frac{g}{\sqrt{2}}\bar{b}\frac{i\sigma^{\mu\nu}q_{\nu}}{m_W}g_L \mathcal{L} + g_R \mathcal{L} + g_R \mathcal{L} + H.C,$
- Anomalous coupling at production vertex not taken into account explicitly in the analysis method, but effects on the measurement determined with dedicated simulated samples: null ($V_R=0$) or negligible bias, if $V_L = 1$ and $|V_R|^2 < 0.3$ (D0 limit).

FCNC in single top

Ζ

- tZ production via 2 types of anomalous couplings [arXiv:1304.5551]
- Signature: 3 leptons + 1 b tab + ME_T

$$\mathcal{L} = \sum_{q=u,c} \left[\sqrt{2}g_s \frac{\kappa_{gqt}}{\Lambda} \bar{t} \sigma^{\mu\nu} T_a (f_q^L P_L + f_q^R P_R) q G_{\mu\nu}^a \right] \text{gut, gct}$$

$$+ \frac{g}{\sqrt{2}c_W} \frac{\kappa_{Zqt}}{\Lambda} \bar{t} \sigma^{\mu\nu} (\hat{f}_q^L P_L + \hat{f}_q^R P_R) q Z_{\mu\nu} + \text{h.c. Zut, Zct}$$

$$\underbrace{u/c}_{t} \underbrace{u/c}_{t} \underbrace{u/c}$$

 $\kappa_{gut}/\Lambda < 0.10 \,\text{TeV}^{-1}$ $\kappa_{gct}/\Lambda < 0.35 \,\text{TeV}^{-1}$ $\bar{\kappa_{Zuf}}/\Lambda < 0.45 \text{ TeV}^{-1}$ $\kappa_{\rm Zct}/\Lambda$ < 2.27 TeV⁻¹

 $\kappa_{\rm out}/\Lambda$

0.7

0.8

0.9

 κ_{zut}/Λ

 $B(t \rightarrow gu) < 0.56\%$ $B(t \rightarrow gc) < 7.12\%$ $B(t \rightarrow Zu) < 0.51\%$ B(t→Zc) < 11.40% (95% CL)