Machine Protection

CERN CAS, February 2014

Jörg Wenninger CERN Beams Department Operation group – LHC section

Introduction

Stored energy & interaction with matter Machine protection design Example from LHC The unexpected **Summary**

Accelerators, as all other technical systems, must respect some general principles with respect to safety:

- **□** Protect the people (legal requirements).
- **□** Protect the environment (legal requirements).
- **□** Protect the equipment (asset management).
	- Without beam : superconducting magnets, high power equipment, power cables, normal conducting magnets, RF systems, etc.
	- **With beam: damage caused by beams.**

□ Those 3 aspects may be coupled in some circumstances!

This presentation on "Machine Protection" is focused on equipment protection from damage caused by beams.

All major accelerator projects are pushed to new records.

□ Higher beam energy and intensity:

- Hadron colliders LHC.
- Linear e+e- colliders.
- CERN Future Circular Colliders study.
- □ Higher power and brightness:
	- \triangleright Neutron spallation sources.
	- Neutrino physics.
	- Synchrotron light sources (synchrotron light power).

Frequent mixing of superconducting magnets/RF and high power beams

>> the energy (density) stored in the beams increases !

In many modern projects machine protection aspects have a large impact on (or may even dominate) design and operation

- □ High power accelerators from some 10 kW to above 1 MW.
	- ▶ Neutron spallation sources (SNS, ISIS).
	- > High power/high duty cycle machines (PSI cyclotron, JPARC).
- □ High energy hadron colliders and synchrotrons.
	- \triangleright LHC and its upgrades.
	- \triangleright Synchrotrons for fixed target experiments (SPS).
- e+e- colliders.
	- B-factories (KEKB, super-KEKB).
- □ Synchrotron light sources.
	- \triangleright High power photon beams.
- □ Linear colliders/ Free Electron Lasers (FEL).
	- > SLAC linac, ILC, CLIC, FLASH, XFEL.
- □ Energy recovery linacs.
- D Medical accelerators.
	- \triangleright The patients !

- **□** Protection is required since there is some risk.
	- Risk = probability of an accident

x consequences (in Euro, downtime, radiation doses).

□ Probability of an uncontrolled beam loss:

- \triangleright What are the failures that lead to beam loss into equipment?
- \triangleright What is the probability for the failure modes?

Consequences:

- \triangleright Damage to equipment.
- Downtime of the accelerator for repair.
- \triangleright Activation of material, dose to personnel.

>> The higher the risk, the more protection becomes important !

Introduction

Stored energy & interaction with matterMachine protection design Example from LHC The unexpected **Summary**

Relevant parameters for MPS

Momentum of the particle

□ Particle type

Activation is mainly an issue for hadron accelerators.

□ Energy stored in the beam

- 1 MJ can heat and melt 1.5 kg of copper.
- 1 MJ = energy stored in 0.25 kg of TNT.
- **□ Beam power**
- **□ Beam size**
- □ Time structure of beam

One LHC beam $=$ 360 MJ $=$?

The kinetic energy of a 200 m long train at 155 km/hour

90 kg of TNT

8 litres of

gasoline

Key factor : how easily and how fast the energy is released !!

15 kg of chocolate

Stored energy chart

CERN CAS - Machine Protection - J. Wenninger **7 Feb 2014 CERN CAS - Machine Protection - J. Wenninger**

Beam loss in materials

□ Lost particles induced particle cascades in materials they traverse.

- \circ The peak energy deposition can be deep in the material at the maximum of the hadron / electromagnetic shower.
- o Particle showers from hadrons with energies of 100's of GeV to some TeV have a penetration depth of some meters.

- **□** The energy deposition leads to a temperature increase, and for very fast losses to shock waves and to plastic deformation.
	- o Material can melt, vaporize, deform or lose its mechanical properties.
	- o Limited risk for some 10 kJ, large risk for some MJ.
	- o Equipment becomes activated due to beam losses.
	- o Superconducting magnets can quench (become normal-conducting).

From uncontrolled damage tests…

<u>.,</u>

A real case from the 2008 SPS run !

- Impact on the vacuum chamber of a 400 GeV beam of 3x10¹³ protons (**2 MJ**).
- Event is due to an insufficient coverage of the SPS MPS (known !).
- Vacuum chamber to atmospheric pressure, downtime ~ 3 days.

$Risk = (3 days$ downtime $+$ dose to workers) x (1 event / 5-10 years)

CERN CAS - Machine Protection - J. Wenninger

- \Box In the past decade a lot of effort was invested to better understand the interaction of high energy / high density beams with matter.
- **D** Experiments:
	- o *Ad-hoc experiments for the LHC,*
	- o *Construction of a dedicated test facility at CERN (HiRadMat @ SPS).*
- **□** Modeling and comparison with tests.
	- o *Many matter phases (solid, liquid, plasma), 'hydro-codes'.*
- **□** Some outcomes:
	- \checkmark Validation of LHC carbon collimator robustness,
	- \checkmark Validation of damage thresholds for LHC injection energy,
	- \checkmark Validation of simulation codes,
	- \checkmark Search for more robust material.

Controlled SPS experiment / protons.

- □ Energy 450 GeV,
- **Beam area** $\sigma_x \times \sigma_y = 1.1 \times 0.6$ **mm²,**
- **D** Damage limit for copper at 2×10^{12} p.
- □ No damage to stainless steel.

 \triangleright Damage limit is ~200 kJ, < 0.1 % of a nominal LHC beam. \triangleright Impact D: \approx 1/3 of nominal LHC injection.

HiRadMat tests – new materials

Courtesy A. Bertarelli (EN)

Copper-Diamond 144 bunches

Inermet 180, 72 bunches Molybdenum, 72 & 144 bunches Glidcop, 72 bunches (2 x)

Molybdenum-Copper-Diamond 144 bunches

Molybdenum-Graphite (3 grades) 144 bunches

HRMT14: high intensity tests

Inermet : comparison between simulation and experiment

Small…but dangerous

\Box Damage ω Linac4 with a 3 MeV beam – vacuum leak.

- **D** Failure combination:
	- o *Beam misaligned,*
	- o *Unlucky magnet setting,*
	- o *Aperture limitation at bellow.*

JB Lallement

At such low energies, the local energy loss per proton is very high

 \Rightarrow Damage after some integration time

Release of 600 MJ at LHC

The 2008 LHC accident happened during test runs without beam.

A magnet interconnect was defect and the circuit opened. An electrical arc provoked a He pressure wave damaging ~600 m of LHC, polluting the beam vacuum over more than 2 km.

Introduction

Stored energy & interaction with matter Machine protection designExample from LHC The unexpected

Summary

Protect the machine

o Highest priority is to avoid damage of the accelerator.

Protect the beam

- \circ Complex protection systems reduce the availability of the accelerator, the number of "false" interlocks stopping operation must be minimized.
- o Trade-off between protection and operation.

Provide the evidence

- o Clear (post-mortem) diagnostics must be provided when:
	- the protection systems stop operation,
	- something goes wrong (failure, damage, but also 'near miss').

Beam loss

In accelerators, particles are lost due to a variety of reasons: beam gas interaction, losses from collisions, losses of the beam halo, …

- **□** Some (continuous) beam losses are inherent to the operation of accelerators.
	- o *Taken into account during the design of the accelerator.*
	- Max. loss rates may be given by the design:
		- *Prevent magnet quenches (LHC).*
		- *Allow maintenance (residual contact radiation).*
- **□** Accidental beam losses are due to a multitude of failures mechanisms.

Analysis and structure required !

Failure type:

- o Hardware failure (power converter trip, magnet quench, AC distribution failure, object in vacuum chamber, vacuum leak, RF trip, .…).
- o Controls failure (wrong data, wrong magnet current function, trigger problem, timing system, feedback failure, ..).
- o Operational failure (chromaticity / tune / orbit errors, …).
- o Beam instability (high beam / bunch current).

Failure parameters:

- o Damage potential.
- \circ Probability for the failure.
- o Time constant for beam loss.

Mixture defines the risk and the criticality for MP

□ Machine state (when failure occurs):

- o Linac, beam transfer, injection and extraction (single pass).
- o Stored beam.

- \Box Avoid a failure by design if you can.
- □ Detect a failure at the hardware (equipment) level and stop operation – first protection layer.
- □ Detect the consequences of the failure on beam parameters (orbit, tune, losses etc) and stop operation – second protection layer.
- **□** Stop beam operation.
	- o *Inhibit injection,*
	- Send beam to a dump,
	- Stop the beam by collimators / absorbers.
- **Elements of protection:**
	- Equipment and beam monitoring,
	- \checkmark Collimators and absorbers,
	- \checkmark Beam dumps,
	- \checkmark Interlock system linking different systems.

Passive protection

- o Collimators.
- o Masks.
- o Absorbers.
- o Dumps.

Obstacles to absorb the energy

Active protection

- o Equipment surveillance.
- o Beam observation.
- o Extraction (dump) kickers.

Detection of a failure directly on the equipment or by its effects on the beam.

Modern MP systems usually require both passive and active protection to cover all failure cases.

Feb 2014

 \blacktriangleright

Introduction

Stored energy & interaction with matter Machine protection design Example from LHC

The unexpected

Summary

Beam loss monitoring

- \circ Very fast reaction time $\sim \frac{1}{2}$ turn (40 µs)
- \circ Very large dynamic range (> 10⁶)
- ~**3600** chambers (BLMS) are distributed over the LHC to detect beam losses and trigger a beam abort !
- □ BLMs are good for almost all failures as long as they last \sim a few turns (few 0.1 ms) or more !

Beam collimation (cleaning)

- **□** The LHC requires a complex multi-stage collimation system to operate at high intensity.
	- o *Previous hadron machines used collimators only for experimental background conditions.*

Almost *100 collimators*, mostly made of Carbon and Tungsten, protect the superconducting magnets against energy deposition from the beam

> 140 MJ in each beam versus few mJ to quench a magnet

Collimation system

- \Box To be able to absorb the energy of the protons, the collimators are staged – primary, secondary, tertiary – multi-stage system.
- \Box The system worked perfectly also thanks to excellent beam stabilization and machine reproducibility – only one setup / year.
	- \circ ~99.99% of the protons that were lost from the beam were intercepted.
	- o *No magnet was quenched in operation at 3.5/4 TeV.*

2014

Feb

 \blacktriangleright

7 Feb 2014 CERN CAS - Machine Protection - J. Wenninger

CERN CAS

Feb 2014

 \sim

- Machine Protection - J. Wenninger

- \Box The BLM signals near the experiments are almost as high at the collimators (steady losses) due to the luminosity.
	- o *At the experiments the BLM record collision debris – in fact the physics at small angles not covered by the experiments !!*

LHC beam dumping system

7 Feb 2014 CERN CAS - Machine Protection - J. Wenninger

7 Feb 2014

CERN CAS - Machine Protection - J. Wenninger

LHC dump line

The LHC dump block

7 Feb 2014

7 Feb 2014 CERN CAS - Machine Protection - J. Wenninger

CERN CAS

Feb 2014

 \sim

- Machine Protection - J. Wenninger

The end – for the beam !

- **□** The dump is the only LHC element capable of absorbing the nominal beam.
	- *Beam swept over dump surface to lower the power density.*
- **Q** A beam screen installed in front of the dump provides monitoring of the dump execution.

The shape of the beam impact is checked against prediction at each dump !

36

Let us pick an example for the LHC

□ Step 1: Figure out what can go wrong...

- o *Requires good understanding of accelerator physics: how does a given element affect the beam?*
- o *Requires good understanding of the hardware: time scales, failure modes?*
- o *Requires a complete overview of all machine equipment that affect the beam.*
- o *The analysis must be done systematically for every system, from bottom up – including the software/controls.*

□ Step 2: Identify a critical element – the D1's.

LHC room temperature (normal conducting) separation/recombination dipoles ('D1')

7 Feb 2014

- **□ Step 3: Simulate the failure.**
	- o *12 magnets are powered in series.*
	- o *Large betatron function when squeezed* $(\beta > 2000 \text{ m})$ \rightarrow large orbit changes.
	- \circ *Short time constant* τ = 2.5 seconds (B is *the magnetic field):*

$$
B(t) = B_0 e^{-t/\tau}
$$

Simulated orbit change along the LHC ring a few milliseconds after failure.

- \Box The simulations indicate absence of redundancy (we only have beam loss monitors) and very short reaction times for BLMs \rightarrow we want an extra-layer of protection at the equipment level.
- □ This analysis triggered the development of so-called FMCMs (Fast Magnet Current change Monitor) that provide protection against fast magnet current changes after powering failures - CERN - DESY/Hamburg collaboration.

□ Step 5: Test failure of PC and FMCM reaction.

o *Switch off D1 PC – simulated failure.*

- **□ Step 6: Real test with beam no FMCM**
	- o *Low intensity ('safe') test beam.*
	- o *Switch off D1 PC – simulated failure.*
	- o *Beams dumped by the LHC BLMs when beams hit the collimators.*

Failure analysis process – step (7)

- **□ Step 7: Real test with beam** with FMCM
	- o *Low intensity ('safe') test beam.*
	- o *Switch off D1 PC – simulated failure.*
	- o *Beam dumped by FMCM.*

J. Wenninger

Timescales @ LHC

The beam's gone immediately isn't it?

- \Box Unfortunately even the best failure detection takes some time, the signal must be propagated to the dumping system, the dumping system must synchronize to the beam.
	- Unavoidable delay to fire the dump !

At the LHC the delay can be up to \sim 3 turns – \sim 300 μ s.

Learning curve

 \Box It took more than a year of commissioning and tuning (e.g. BLM thresholds) to reach the maximum intensity at 3.5/4 TeV

LHC 2010-2012

Stored Energy (MJ)

Introduction

Stored energy & interaction with matter Machine protection design Example from LHC The unexpected

Summary

Surprising 'Unidentified Falling Objects'

- **□** Very fast and localized beam losses were observed as soon as the LHC intensity was increased in 2010.
- **□** The beam losses were traced to **dust particles falling into the beam** – '**UFO**'.
- If the losses are too high, the beams are dumped to avoid a magnet quench.
	- $-$ ~20 beams dumped / year due to UFOs.
	- We observe conditioning of the UFOrate from ~10/hour to ~2/hour.

In one accelerator component UFOs were traced to Aluminum oxide particles.

Timescales @ LHC

Incidents happen

JPARC home page – January 2014

□ Due to a power converter failure, a slow extraction was transformed into a fast extraction.

o *Extraction in milliseconds instead of seconds.*

□ As a consequence of the high peak power a target was damaged and radio-isotopes were released into experimental halls.

>> machine protection coupled to personnel protection !

□ Investigations and protection improvements delayed the restart of the JPARC complex for ~7-8 months. JPARC is just restarting.

> *One insufficiently covered failure case had major consequences !*

Machine protection:

- \Box requires a comprehensive overview of all aspects of the accelerator (accelerator physics, operation, equipment, instrumentation),
- \Box requires understanding the different failure types that could lead to uncontrolled beam loss,
- \Box affects many aspects of accelerator construction and operation,
- \Box must be an integral part of the machine design,
- \Box is becoming increasingly important for future projects, with increased beam power / energy density and increasingly complex machines.

Stored energies - the future

