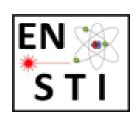
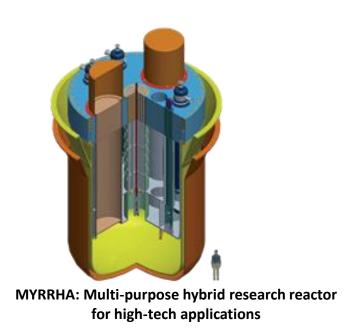
²⁰⁶Po sources for production and release studies relevant for high power spallation targets


Dorothea Schumann, Jörg Neuhausen, Tânia Melo Mendonça, Thierry Stora

Spokesperson: Dorothea Schumann

Co-Spokesperson: Thierry Stora

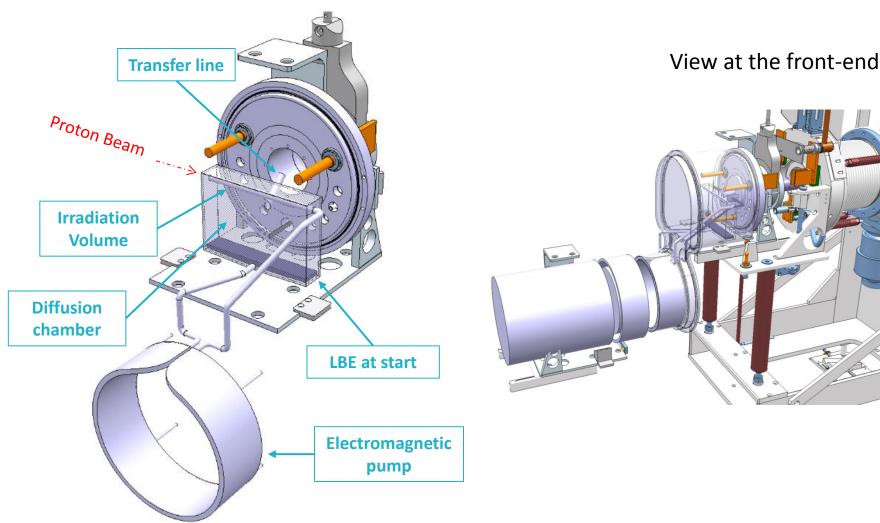
Contact person: Tânia Melo Mendonça

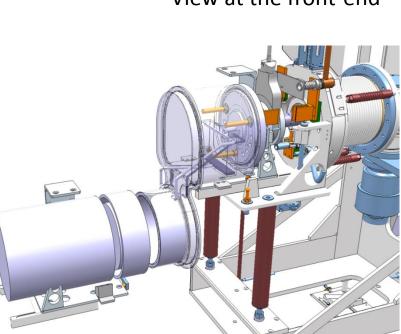


Lead Bismuth Eutectic (LBE)

LBE proposed as:

- spallation target material and/or reactor coolant for accelerator driven systems (ADS) – MYRRHA project
- target material for molten metal loop for EURISOL -LIEBE project


Release of polonium is a driving element for licensing and commissioning.



66 cm

LIEBE: Liquid eutectic Pb/Bi loop for EURISOL

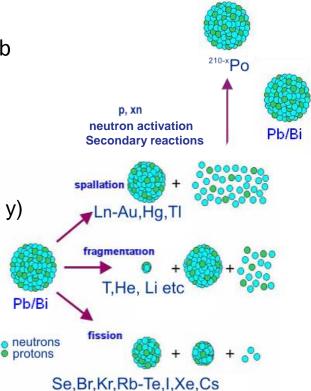
Liquid eutectic Pb/Bi loop for EURISOL LIEBE project

Production of polonium in irradiated LBE

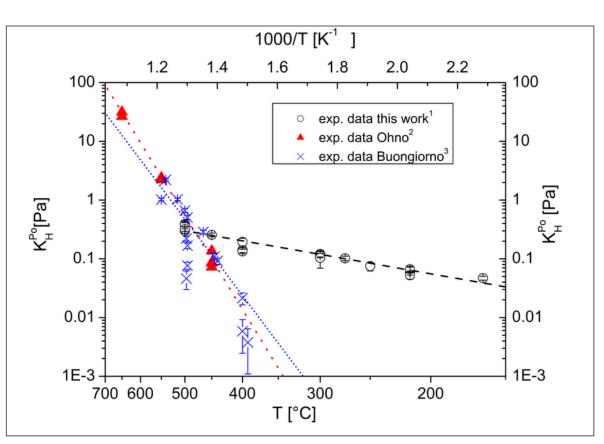
Production of Polonium

- Direct production via (p,xn) reactions on ²⁰⁹Bi
- > β-decay from ²¹⁰Bi produced by neutron activation
- Secondary helium-induced (alpha) reactions in Bi and Pb $((\alpha,Bi)\longrightarrow At\ and\ (\alpha,Pb)\longrightarrow Po)$

²⁰⁹Bi
$$\xrightarrow{(n,\gamma)}$$
 ²¹⁰Bi $\xrightarrow{(\beta^{-})}$ ²¹⁰Po (T_{1/2}=138 d)


²⁰⁹Bi
$$\xrightarrow{(p,xn)}$$
 ^{210-x}Po (²⁰⁹Po: T_{1/2}=102 y, ²⁰⁸Po: T_{1/2}= 2.898 y)

Key element for safety assessment


radiotoxicity (alpha emitter) and volatility

Chemical behaviour

- Moderately volatile in elemental state
- Volatility in presence of moisture and/or hydrogen

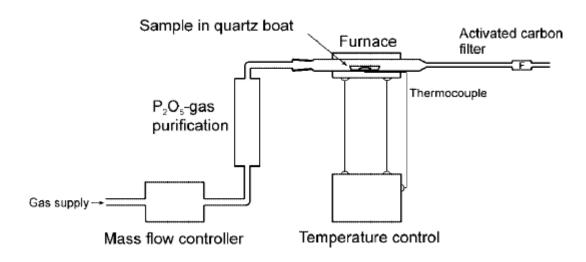
Evaporation characteristics of polonium

Comparison of Henry constant data of Po over liquid LBE under inert gas atmosphere and corresponding functions according to refs. 1, 2 and 3.

- ➤ First own results show deviation from extrapolation of literature data Po evaporated as PbPo?
- ➤ Chemical composition of volatile species and formation conditions unclear.
- Additional systematic experiments under different chemical conditions are necessary.

¹ M. Rizzi et al., Unpublished results

² S. Ohno et al., J. Nucl. Sci. Tech., 43 (2006) 1359-1369


³ J. Buongiorno et al., Radiochim. Acta 91 (2003) 153-158

Evaporation experiments: Materials and methods

LBE samples ($10x5x1.5 \text{ mm}^3$) containing 206 Po ($T_{1/2}$ = 8.8 d) short-lived Po isotope: simplified handling of activity and measurement

Transpiration method

- Sample placed in quartz boat inside tube in furnace
- Tube flushed with gas mixture and annealed
- \triangleright γ -ray spectrosopy measurements after each annealing step fractional release of Po

Beam time request

- \geq 206Po obtained by implanting precursor ²¹⁰Fr (T_{1/2}=3.18 min)
- $ightharpoonup^{210}$ Fr beams produced from UC_x target with tungsten surface ionizer (intensity: 1x10⁸ ions/s)
- Implantations performed on GLM beam line

- ➤ Implanted dose up to 1x10¹² atoms 1 MBq

 ISOLDE and PSI laboratories allowance: 100LA=1 MBq ²⁰⁶Po
- Opening of GLM chamber after implantation in the presence of Radioprotection officers
- Shipping to PSI up to 1 MBq allowed
- Beam time request: A total of 12 shifts (split into 4 runs over two years).

Swiss Ordinance:

Thank you for the attention