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Beta delayed neutron emission, r-process
and reactor (decay heat) modeling

Coordinated Research Project (CRP)
at the International Atomic Energy Agency 

(IAEA)

“Reference Database for 
Beta-delayed Neutron Emission Evaluation”

http://www-nds.iaea.org/beta-delayed-neutron/

→ decay heat calculations 
reactor physics

test of βn-decay models 
(structure & statistical 

components)
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Beta delayed neutron emission

QRPA Model

Hauser-Feshbach
 Model

B(GT) model
neutron emission:
statistical model

Fig. Schematic energy-level diagram for β-
delayed neutron emission.

Elements of theory (included in model): 
1.    Beta Decay
       Allowed GT (J, J+/-1)  and  1st forbidden
2.   Barrier penetration (tunneling)
      Optical Model
3.   n-γ branching from neutron emitting states 

(determination of Pn)
      Assumed E1 as fastest. 
4.   Excited states in Daughter  

Separate n spectrum components to 
different daughter states
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For the same theoretical Sβ the predicted 
Pn depends on particle emission model 
assumptions.
★ Close to stability:  n and γ competition near 
the barrier (reactors)
★ Far from stability: 1n/2n competition (r-
process)
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Conventional spectroscopy: 
→ energies, level structures 

and intensities

angular distribution studies
angular distribution of beta-delayed neutrons 
and γ’s from oriented 137,139I and 87,89Br nuclei
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Beta delayed neutrons from oriented 137,139I and 
87,89Br nuclei

VANDLE@NICOLE

    (T1/2 24.5s,  Pn 7.14%)
     (T1/2 55.6s,  Pn 2.6%)

(T1/2 2.28s,  Pn 10%)
 (T1/2 4.4s,    Pn 13.8%)

→ 137,139I and 87,89Br beams 
polarized with NICOLE

  137I    →  136Xe     
  87Br   →  86Kr       
     139I   →  138Xe*  
   89Br  →  88Kr*      

→ detection of neutrons and γ’s:
✦  Versatile Array of Neutron Detectors at Low 

Energy
 (VANDLE)

-- two HPGermanium gamma detectors

 VANDLE detector at HRIBF (Oak Ridge)

 NICOLE at ISOLDE facility
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Experiment and theory
Delayed neutron spectrum

 from 137I decay

Neutron energy [keV] 
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[ H. Ohm et al. Physik A - Atoms and 
Nuclei 296, 23-33 (1980) ]

The angular distribution:

parent 
orientation

β-decay 
(GT or FF)

neutron emission 
angular distribution[ N. Stone et al.  Hyperfine 

Interactions 136/137: 143–148, 2001.]
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Orientation experiment - schematic model

cold, 90°cold, 0°

warm Simulations J. Stone and N. Stone
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→ partial waves 
distribution for different angular 

momenta

suppression 
by factor of 10

→ example of expected level of 
anisotropy: ratio of warm to cold at a 

given angle and temp.



Nuclear orientation experiment with VANDLE at 
NICOLE

NICOLE
controlled and large  

polarization

Fig. Schematic on-line nuclear orientation experiment.

137I beam
magnetic mom. ~ 3 n.m.
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controlled and large  

polarization

Fig. Schematic on-line nuclear orientation experiment.
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Nuclear orientation experiment with VANDLE at 
NICOLE

→ the anisotropy of the 
angular distribution is defined 
by the ratio of cold to warm 
intensities at a given angle 

and temperature.

Fig. Neutron angular distribution (En = 500 keV).
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Fig. Schematic on-line nuclear orientation experiment.

HPGe detectors
- γ detection 

(γ-ray detection from 137Xe and 60Co temp. monitor)

VANDLE
- neutron TOF measurement

placed at the distance of 50cm 
3x16 bars 3x3x60cm3 each

Timing resolution ~1ns

beta trigger
- plastic detectors 

as trigger from VANDLE

digital electronics              
- Pixie16 modules
nano-second time 

resolution required for 
TOF measurements

start

stop
NICOLE

controlled and large 
polarization

Nuclear orientation experiment with VANDLE at 
NICOLE



Expected neutron spectra (simulations)

blue: 
individual

 peaks

6 shifts=3 shifts each same 
temp,

spin dependent beta strength 
distribution

cold 30mK, 90°cold 30mK, 0°

warm

red: total

- VANDLE@50cm from NICOLE

- VANDLE intrinsic efficiency 
20%

 (conservative estimate)

- intrinsic resolution: 6%

- alternate peak allocated 
arbitrarily L=4,2
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GEANT4 simulations 
M. Madurga (UTK) 

and S. Ilyushkin (CSM) 



Beam request

1.   Iodine and bromine beams (137,139I and 87,89Br - U. Köster) 

      minimum 1x105 ions/s (max. 1x106)
      (at ISOLCE-SC beams of Br and I were produced from ThO2 and UCx with MK4 

negative ion source with yields 9x105 and 2.9x107 ions/uC [1, 2])

2.   Preferred negative ions beam

         (alternative solution to ensure at least 20% purity of the beam: 
a standard UCx target, a neutron converter and a “hot plasma source” MK5/D5) 

3.   34 shifts requested    
15 shifts in 2014 (137I and 87Br each at three temp. and warm) 

and 15 shifts in 2015 (139I and 89Br - feeding daughter excited states) 
with a ThO2 (or UCx) with MK4 negative ion source, 

in addition two shifts of 9Li and 8He with warm fridge are needed 
prior to experiment for calibrations 

(alternatively 15 shifts with a standard UCx target, a neutron converter, 
40Ca mass marker and a “hot plasma source” MK5/D5)

[1] P.D. Kleinschmidt and D.L. Hildenbrand, J. Chem. Phys. 68, 2819 (1978) 
[2] K. Hilpert and M. Mileer, J. Chem. Phys. 97, 6674 (1992)



Summary

Update on NICOLE
- the fridge has been repaired (ICE-Oxford) and comes back to 

ISOLDE by the end of November

We propose first angle and energy resolved beta delayed neutron 
measurement on medium heavy nuclei

- Purpose: study relatively complex nuclei 137,139I and 87,89Br  to test 
statistical models for the understanding of the βn-decay models

- NICOLE@ISOLDE provides unique combination of high intensity 
beams and a very high degree of polarization which is essential for 

the proof of principle experiment

- VANDLE: neutron detection with energy and angle resolution 
combined with digital electronics

VANDLE@NICOLE


