Study of octupole deformation in n-rich Ba isotopes populated via β decay

G.Benzoni, H.Mach and N.Marginean Local contact: M.Kowalska

Collaboration:

- INFN sezione di Milano, Milano, Italy
- IFIN-HH, Bucharest, Romania
- National Centre for Nuclear Research, NCBJ, Otwock, Poland
- Universita' degli studi di Milano, Milano, Italy
- Universidad Complutense de Madrid, Madrid, Spain
- University of West of Scotland, Paisley, Uk
- ILL, Greonoble, France
- Technische University of Darmstadt, Darmstadt, Germany
- Cern, Geneva, Ch
- IKP, University of Cologne, Cologne, Germany

As part of the IDS collaboration

Study of $^{150-151-152}$ Ba isotopes via the β decay of $^{150-151-152}$ Cs

- Unique capability of ISOLDE to produce
- high-intensity ¹⁵⁰⁻¹⁵¹⁻¹⁵²Cs beams

Nucleus	CARIBU (Cf)	RIKEN
	Yields x 1Ci	pps
¹⁴⁸ Ba		~10-1
¹⁵⁰ Ba		~10-2
¹⁴⁸ Cs	1.5*10-4	~10-2
¹⁵⁰ €s	10-7	

CERN	Yields [μC ⁻¹]	pps [1.5 μ <i>A</i>]		
¹⁵⁰ Cs	1.2*10 ⁴	1.8*10 ⁴		
¹⁵¹ Cs	1.7*10 ³	2.5*10 ³		
¹⁵² Cs★	1.0*10 ²	150		
★ Extrapolation				

- Exploit the newly upgraded ISOLDE Decay Station (IDS) with improved γ efficiency and possibility to access fast-timing measurements
- Two different aspects will be attached at the same time:
- β DECAY PROPERTIES
- STRUCTURE OF DAUGHTER NUCLEI

Octupole deformations

Existence of octupole static/dynamic deformations is a long standing quest attracting much attention

Strong octupole correlations show up due to interaction of orbitals with $\Delta J = \Delta I = 3$

Two predicted regions for octupole def. are around Ba and Th-Ra Possibility of having dynamic and static correlations

→ Theoretical models do not agree on onset of static deformations

Experimental fingerprints are:

- Low-lying negative parity states of collective nature (1-,3-...)
- Interspacing of negative- and positive-parity states with sequence $I^+,(I+1)^-,(I+2)^+...$
- Large B(E1) transition probabilities → large dipole moments
- Presence of E3 transitions
- Retarded appearance of back-bending at increasing spins

Octupole deformations: Ba isotopic chain

downward trend of the yrast 1- states with increasing N, \rightarrow extend the systematics of the 1- level up to $^{150-152}$ Ba to locate the maximum of octupole def. in A=150 region.

140-144Ba: hints of octupole correlations

- Alternating-parity bands
- Large and constant B(E1) values

Abrupt change in structure for 146Ba

→ Vanishing of dipole moment due to– shell effects

Restoration of the dipole moments for ¹⁴⁸Ba, and behaviour similar to ¹⁴⁴Ba

¹⁵⁰Ba expected to show maximum of octupolarity

β decay properties:

- Cs->Ba β decay gross properties will be investigated
- r-process path lies in proximity of accessible nuclei. Determination of lifetimes defines correct timescales and waiting points
- Gamma coincidences

 determination of apparent

 beta feeding and logft values of populated states
- Possible determination of n-emission competition

Information on the decay, such as lifetimes and delayed neutron-emission probabilities, will be extracted, together with the detailed spectroscopy of the daughter nuclei, via $\beta-\gamma$ coincidences and lifetimes measurement of specific states.

Experimental details:

Improvements compared to past attempts:

- Use of tape transport system helps removing longerliving bg. contamination → suppression of 1-2 orders of magnitude
- 4 Clover + 4 LaBr3 detectors
- Use of one LEP detector to distinguish X rays.

Energies of β delayed γ transitions are well separated and can be also measured in LaBr3 det.

→ increase in statistics

High g.s -> g.s decay expected IDS setup is optimized for γ spectroscopy + suppression of impurities

IDS station allow to identify the transitions in 150 Ba even if they represent only 5%** of the decay intensity of 150 Cs.

** lower limit deduced by the previous measurement using a tape system.

Count rate estimates:

Event	Assumption	Events/s	Events/day
Implant 150 <i>Cs</i> Populate 150Ba	ε _β = 60% Pn=20%	8640	7.5 E 8
2+->0+	I_{β} = 5% I_{γ} < 200 keV ϵ_{γ} = 5%	22	1.9 E6
Implant 151 <i>Cs</i> Populate 151Ba	$\epsilon_{ m eta}$ = 60% Pn=30%	1000	9.2 E7
2+->0+	I_{β} = 5% I_{γ} < 200 keV ϵ_{γ} = 5%	2.6	2.3 E5
Implant 152 <i>Cs</i> Populate 152Ba	$\epsilon_{ m eta}$ = 60% Pn=40%	50	4.5 E6
2+->O+ Band 2 Band 3 4071.8	I_{β} = 5% I_{γ} < 200 keV ϵ_{γ} = 5%	0.1	1.2 E4

Band 1

¹⁴⁶Ba

Conclusions:

- Propose to study the properties of $^{150-152}$ Ba populated via b decay of $^{150-152}$ Cs
- Importance of accessing to nuclei in this heavy mass region to define occurrence of octupole deformations and locate the maximum of octupole deformation in the A=150 region.
- By exploiting the β decay we can access the low-lying first excited states and check presence of 1-, 3- states
- Study of b decay properties (lifetimes and Pn) of importance to define r-process path and timescales

High intensity $^{150-152}Cs$ beams are unique to ISOLDE at present ISOLDE Decay Station in phase1 configuration 4 HPGe + LEP + 4 FAST-TIMING detectors LaBr₃

- → Improved conditions compared to previous measurements
- → we can determine halflives of decay and Pn
- → Get information on low-lying levels and their properties to assess octupole def. in Ba isotopic chain

Beam request: 24 shifts (4 of $^{150}Cs + 8$ of $^{151}Cs + 12$ of ^{152}Cs)

TAC comments:

Large contamination: A=150-152 lanthanides +Ba. Is it a problem? If yes, n-conv + LIST +RILIS. Challenging - full TISD needed. Indications possible higher yields with nanoUCx

Based on past experience with Cs beams one can note that:

- The amount of Ba in the same mass expected to be 2 orders of magnitude lower than Cs;
- Ba can come out also as BaF+, in particular ¹³¹Ba+¹⁹F and ¹³³Ba+¹⁹F
 - → ionization is low
 - → very long halflives (133 Ba has 10.5 years halflife, and 131 Ba 11.5 days)
 - → we ask not to be scheduled with the same target as experiments requiring fluorination
- Lanthanides would be ionized but they are not released from UCx.
- Cs is much better surface ionized than laser ionized > No need for RILIS
- LIST implies a loss in efficiency
- Cs will ionize well already at very low line temperature while isobaric contaminants don't
 - → on-line optimization by lowering the line temperature
 - → consider the use of Ta or Nb line instead of W line
- We consider the option of having a neutron converter
- If available we can try nanoUCx target, but it is not essential