

Asymmetric Cryptography

Lukasz Pater
CMMS Administrator and Developer

Agenda

- Introduction
- Why do we need asymmetric ciphers?
- One-way functions
- RSA Cipher
- Message Integrity
- Examples
- Secure Socket Layer

- Single Sign On
- Conclusion

Introduction

Challenge: How perfect strangers

 can send each other encrypted messages?
Powerful Idea: Public-key encryption!

Diffie, Hellman, Merkle [1976]

Rivest, Shamir, Adleman [1977]

Introduction

- Symmetric Cryptography
- Requires that sender and receiver know shared secret key
- Asymmetric Cryptography - radically different approach

- Sender and receiver do not share the same key
- Public encryption key known to all
- Private decryption key know only to the receiver

One-way functions

- Most functions are invertible; for any $f(x)=y$, there is an $f^{1}(y)=x$ (e.g. division, multiplication, DES)
- $f(x)=2 \cdot x, f^{1}(x)=x / 2 \ldots$
- A function which is easy to compute in one direction, but difficult to compute in the other, is called one-way function
- Polynomial factorization, hashing, modular arithmetic, ...
- One-way function that can be easily inverted with additional knowledge (${ }^{\circ} \mathrm{m}$) is known as trapdoor one-way function

Domain Range

One-way functions and cryptography

- Public key encryption is based on the existence of trapdoor one-way functions
- Encryption, done with the public key ($\left(^{(m)}\right.$), is very easy
- Decryption is computationally hard (factorization of large numbers, discrete logarithm problem)
- Knowledge of the private key (0 m) "opens the trapdoor", making inversion easy

One-way functions and cryptography

- Public key encryption is based on the existence of trapdoor one-way functions
- Encryption, done with the public key ($\left(^{(m)}\right.$), is very easy
- Decryption is computationally hard (factorization of large numbers, discrete logarithm problem)
- Knowledge of the private key (C^{-m}) "opens the trapdoor", making inversion easy

RSA (Rivest, Shamir, Adleman)

- RSA is the most well-known and common public key cryptosystem
- Basic notation: a key pair (e,d,N) contains two keys:
- (e, N) is the public key, (d, N) is the private key
- Let RSA be the encryption function and 'ABC' plaintext message

$R S A\left(\mathbf{e}, \mathbf{N},{ }^{\prime} A B C^{\prime}\right)$
RSA(d, N, '7\#K')

RSA Algorithm

- RSA's security is based on modular arithmetic
- $x \bmod n$; remainder of x when divided by $n(5 \bmod 2=1)$
- p and q are relatively prime if their greatest common divisor is 1
- p and q are multiplicative inverse when $(p \bullet q=1 \bmod n)$
- RSA algorithm
- Pick two large prime numbers p and q, let $N=p \cdot q$
- Select small integer e that is relatively prime to $(p-1)(q-1)$
- Find d, the multiplicative inverse of e $\bmod (p-1)(q-1)$
- (e, N) is the public key, to encrypt compute $C=M^{e} \bmod N$
- (d, N) is the private key, to decrypt compute $M=C^{d} \bmod N$

RSA Algorithm / Example

- Pick two large prime numbers \boldsymbol{p} and \boldsymbol{q}, let $\boldsymbol{N}=\boldsymbol{p} \cdot \boldsymbol{q}$

$$
-p=3, q=11, N=p \cdot q=33
$$

- Select small integer e that is relatively prime to ($p-1$)($q-1$)
- $(p-1)(q-1)=20, e=3$ (prime to 20$)$
- Find d, the multiplicative inverse of e $\bmod (p-1)(q-1)$
- Find d, that $d \cdot 3 \bmod 20=1, d=7$
- (e,N) is the public key, to encrypt compute $M^{e} \bmod N$
- $(3,33)$ is the public key, $2^{3} \bmod 33=8$
- (d, N) is the private key, to decrypt compute $M^{d} \bmod N$
- $(7,33)$ is the private key, $\mathbf{8}^{7} \bmod 33=2$

Strengths of RSA

- Why is RSA secure?
- Suppose you know the public key (e,N), N=p•q
- The security of RSA is dependent on the assumption that it's difficult to determine the private key d from (e, N)
- Essentially need to find factors of N without knowing p and q
- Factoring is thought to be computationally hard (no proof!)
- Some statistics for the fastest known factoring algorithm

$$
\begin{array}{|l|l|}
\hline \text { Key Size } & \text { MIPS-years required to factor } \\
\hline 512 \text { bits } & 30,000 \\
\hline 1024 \text { bits } & 300,000,000,000 \\
\hline 2048 \text { bits } & 300,000,000,000,000,000,000 \\
\hline
\end{array}
$$

Message Integrity

- Allows communicating parties to verify that received messages are authentic
- Content of the message has not been altered
- Source of the message is who/what you think it is
- Message Digests
- A Hash function $H()$ that takes as input an arbitrary length message and outputs a fixed-length string - message digest
Music - bash -68×5
lpatermac:Music lukaszpater\$ shasum Sak_Noel_-_Loca_People.mp3
f62d2ca0425717ede8d85bb3a6650fe02b2c3fac Sak_Noel_-_Loca_People.mp3
lpatermac:Music lukaszpater\$

Message Integrity

- Allows communicating parties to verify that received messages are authentic
- Content of the message has not been altered
- Source of the message is who/what you think it is
- Message Digests
- A Hash function $H()$ that takes as input an arbitrary length message and outputs a fixed-length string - message digest
Music - bash -68×5
lpatermac:Music lukaszpater\$ shasum Sak_Noel_-_Party.mp3
5fb5403ff5d430bd0ffe6879ab565eb612f3265f Sak_Noel_-_Party.mp3
lpatermac:Music lukaszpater\$ \square

Digital Signatures

- Cryptographic technique analogous to hand-written signatures
- Sender digitally signs the digest of the document (思) with his/hers private key (0^{-m}), establishing that he is the owner

Certification Authorities

- Certification Authority (CA 酉) binds public key to particular entity, for example: to Bob
- Bob provides "proof of identity" to the CA
- CA creates certificate binding Bob to his public key
- Certificate () containing Bob’s public key ($\circ^{(m)}$) digitally signed by CA's private key (Cm) says: "This is Bob's public key"

Secure Socket Layer (SSL)

- TCP provides reliable end-toend service
- TCP with SSL provides reliable and secure end-to-end service
- HTTPS: HTTP over SSL
- Subsequently became Internet standard know as TLS
- Provides message integrity (hash functions) and message confidentiality (symmetric encryption with shared secret key)

Hello: SSL options
Hello: SSL options, Certificate

Session key
Cipher Specification
Cipher Specification

Encrypted Traffic

Asymmetric Cryptography

Secure Socket Layer（SSL）

Safari is using an encrypted connection to login．cern．ch．
Encryption with a digital certificate keeps information private as it＇s sent to or from the https website login．cern．ch．

```
-0 VeriSign Class 3 Public Primary Certification Authority - G5
    \square
    ⿴囗⿱一一⿱⿰㇒一大口\mp@code{VeriSign Class 3 Secure Server CA - G3}
4 퓨ᄋ LOGIN.CERN.CH
```

Terificate
Glamharl

LOGIN．CERN．CH
Issued by：VeriSign Class 3 Secure Server CA－G3
Expires：Thursday 16 October 201401 h 59 min 59 s Central European Summer Time
© This certificate is valid
－Trust
Details

Single Sign On (SSO)

- Scenario during typical work day (at CERN)
- Sign in for an absence request
- Sign in to subscribe to one of the technical trainings
- Sign in to order a book from the library
- Sign in ...

Single Sign On (SSO)

- Multi sign on is troublesome
- Is it possible to just sign-on once to perform all the actions?
- Single sign-on can be used to answer that question
- SSO delegates the authentication to centralized service

Single Sign On / How does it work?

- Identity Provider (IP): the system that asserts information about a subject (by issuing a ticket
- Service Provider (SP): the system that relies on the information supplied to it by the Identity Provider (in the issued ticket)

1) User opens a web page
2) SP redirects to IP
3) User logs in
4) IP issues a ticket and redirects to SP
5) SP validates the ticket

Asymmetric Cryptography

Single Sign On (SAML) Ticket

<t:RequestSecurityTokenResponse>

<t:Lifetime>

wsu:Created2014-04-08T13:11</wsu:Created> wsu:Expires2014-04-08T23:11</wsu:Expires> </t:Lifetime>
<saml:Attribute AttributeName="UPN">
lukasz.piotr.pater@cern.ch
</saml:Attribute>
<saml:Attribute AttributeName="CommonName"> lpater
</saml:Attribute>
ds:Signature
ds:SignatureValue nChTR2/k8ltpJTAuAmnsBkt04.... </ds:SignatureValue> <X509Certificate>

MIIIEjCCBfqgAwIBAgIKLYgjv.... </X509Certificate>

```
lpatermac:~ lukaszpater$ openssl x509 -in sso.crt -text
Certificate:
    Data:
        Version: 3 (0x2)
        Serial Number:
            2d:88:23:bd:00:00:00:00:00:30
            Signature Algorithm: sha256WithRSAEncryption
            Issuer: DC=ch, DC=cern, CN=CERN Certification Authority
            Validity
            Not Before: Nov 8 08:38:55 2013 GMT
            Not After : Jul 29 09:19:38 2023 GMT
            Subject: DC=ch, DC=cern, OU=computers, CN=login.cern.ch
            Subject Public Key Info:
            Public Key Algorithm: rsaEncryption
            RSA Public Key: (2048 bit)
            Modulus (2048 bit):
                00:a7:ab:75:0b:44:86:94:b7:5d:2f:63:3e:96:d7:
                df:1a:2a:13:9c:34:f7:7b:3b:4e:c6:50:3d:6c:01:
                    ae:bc:1f:3f:46:3c:a6:f1:e9:fa:f8:44:fd:6e:83:
                                    34:d8:2c:a8:47:95:69:9f:c8:84:95:75:56:71:c0:
                                    04:c4:f2:10:12:ae:f4:0f:a2:cf:7b:ce:af:6f:eb
                                    58:86:e2:8f:78:b7:ee:20:23:7d:67:44:8c:43:87
                                    fe:e7:bb:e4:eb:50:a8:d7:fb:b0:ff:c9:0f:bd:79:
                                    72:77:e0:22:f0:3b:27:fc:6d:21:a4:7e:bb:6c:12
                                    3d:54:e4:0a:7e:92:6a:72:57:12:26:e4:a5:50:1e
                                    4f:25:f7:ef:31:4a:6b:db:d0:74:79:1c:7c:2c:a1:
                                    67:20:76:c3:20:b4:ae:ea:75:5b:14:b7:1a:76:d5:
                                    88:8d:b6:2f:a0:aa:2b:5e:0d:c9:ea:ea:ed:93:3f:
                                    b3:10:37:98:31:3b:c0:e9:91:8e:15:ff:d7:cb:97:
```

</ds:Signature>
</t:RequestSecurityTokenResponse>

SSO / Advantages and Disadvantages

- Advantages
- Reduces the chance of forgetting your password. By having your one-set master password
- Very reach API
- Less code to maintain for the web master
- Single Sign Out
- Disadvantages
- The SSO Identity Provider is highly-critical
- Bad for a multi-user computer, especially if the user stays logged in all the time

Conclusions

- Asymmetric encryption was introduced to complement the inherent problem of the need to share the same key in symmetric ciphers
- Symmetric encryption algorithms can be extremely fast
- Public key algorithms are orders of magnitude less efficient than symmetric key encryption
- Use public key cryptography just to exchange the key!
- Public key certificates allow the secure communication between services and client applications
- Single Sign On enables to access multiple related, but independent software systems

$$
2
$$

