

CW RF System for the ATLAS Efficiency and Beam Intensity Upgrade

Speaker: Yong Luo, Physics Division, ANL

On Behalf of: **Sergey Sharamentov**, Peter Ostroumov, Gary Zinkann Dan Paskvan, Albert Barcikowski, Mike Kelley

Eighth CW and High Average Power RF Workshop, May 13-16,2014 Trieste, Italy

Content

- Introduction to ATLAS
- ATLAS Efficiency and Intensity Upgrade
- RF System for RFQ
- RF System for New Cryomodule Booster A
- Improvement
- Summary and Future Plan

The Present ATLAS Accelerator Cryomodules 8 Cryomodules, 47 SC Accelerating Cavities

New ATLAS accelerator configuration

6 MHz Master

ATLAS Efficiency and Intensity Upgrade

- Increase beam transmission efficiency
 - Radioactive beams from CARIBU (from Proton to Uranium)
- Increase intensity of ion beams
 - Stable ion beams up to 10 pµA, hundreds of electrical microAmps
- This upgrade requires new RF system
 - Two 60 KW amplifiers for 60 MHz RFQ
 - Seven 4 KW amplifiers for New 72 MHz Cryomodule
 - New control system

60.625MHz RFQ and Water Pumps

Installed in 2012. In operation since January 2013

ATLAS CW RFQ

- Total voltage is 2.1 MV
- Novel multi-segment split-coax structure
 - Internal size is 19" only for 60 MHz
 - Strongly coupled segments
 - Reduced number of tuners
 - Bead pull measurements are not required

Ζ

5.02e+003 A/m

- Cooling system is optimized to reduce temperature gradients
 - 3-axis deep hole drilling

Х

	Parameter	Value
1	Duty cycle	100%
2	q/A	1/7 to 1
3	Input Energy	30 keV/u
4	Output Energy	295 keV/u
5	Average radius	7.2 mm
6	Vane Length	3.81 m
7	Inter-Vane Voltage	70 kV
		<0.1 MJ

60KW Amplifiers to Provide Power for RFQ

Simplified Block Diagram of 60KW Amplifier

Automated SEL - Driven Mode System

-allows for driven mode, SEL frequency and phase lock mode and Auto -SEL frequency lock mode for RF power fill-in, driven for acceleration in Auto

Summing Two RF Amplifiers for ATLAS RFQ

-two individual phase stabilization loops

-I&Q modulator used as 360 degrees phase shifter and fast amplitude regulator

LLRF Control for ATLAS RFQ

DRIVEN

ICKUP 60MHz MASTER

SLOW PS

AST PS

REMOTE

TRP C

REMOTE

RFQ PHASE

O GND O

DRIVE OUT

AMPLITUDE ERROR

AC ON

Cryomodule of 7 QWRs and 4 SC Solenoids

- Seven β = 0.077, 72.75 MHz quarter-wave cavities
- Four 9-Tesla superconducting solenoids
- Replaces 3 old cryomodules with split-ring cavities
- Total design voltage is 17.5 MV, 4.5K cryogenic load is 70 W
- Will be operated to provide ~20 MV, 4.5K cryogenic load is 85 W

5.2 m long x 2.9 m high x 1.1 m wide

Vacuum Vessel Room Temperature Magnetic Shield Aluminum Heat Shield (MLI not shown)

Compact design, focusing period Includes 2 cavities and 1 solenoid

Summary of Performance for New Cryomodules

	New	G-Tank	
	Beta=0.077	Beta=0.15	Comment
Number of Cavities	7	7	
Number of Solenoids	4	1	
Operating Temperature	4.5 K	4.5 K	
Voltage per Cavity in Cryomodule	>2.5 (4.1) MV	>2.0 (3.0) MV	Cavity limit in parentheses
Performance Limiting System	?	VCX fast tuner	
E _{PEAK} in Cryomodule	40 (70) MV/m	26 (39) MV/m	Cavity limit in parentheses
B _{PEAK} in Cryomodule	57 (100) mT	47 (69) mT	Cavity limit in parentheses
Power to Helium/Cavity	5 W @2.5 MV	8 W @ 2 MV	

Stored Energy @1MV/m of the new Cryomodule: 0.15 J

New 72.75 MHz Booster A SC Cryomodule

5.2 m long x 2.9 m high x 1.1 m wide

Left: Cryomodule A

Right Upper: RF Coupling Port

Right Bottom: Circulator and Dummy Load with Water Cooling.

New 72.75 MHz Resonator RF System

Power Supply, Amplifier and LLRF Control Unit

Slow Tuner control is integrated into LLRF controller
Contains two phase detectors, frequency detector, three phase shifters and two RF limiters
Provides regulation of resonator phase and amplitude
Provides RF power interlock resonator temperature

Improvement on Reliability of 60KW Amplifiers

- Deionized (DI) Water causes corrosion of Brass fittings
 - Net chemical reactions:
 - $Cu + H_2O \rightarrow CuO + 2 H_{ads}$ (or $Cu_2O + 2 H_{ads}$)
 - 2 *H*_{ads} -> H₂
 - H₂ + ½ O₂ -> H₂O
 - Replaced most brass fittings with stainless steel fittings (especially connected with H.V.)
- Other
 - New home made inductor w/different value (removing unwanted resonance)
 - New powerful fans
 - Better insulator for output capacitors: better isolation
 - Fuses (-> fast blow type)
 - PID loop parameters optimization
 - Others (example)

Broken Inductor

Summary

- New RF system is built and it meets the requirement
- New RF system runs smoothly with the improvement mentioned above

Future Plan:

- Installation of 60KW circulators
- Clean room environment for RFQ amplifiers
- Continuous improvement on other electronics
- For Tomco 4KW amplifiers, finishing stainless steel fittings replacement

End

Backup Slides