Operational experience of high-power RF at Diamond Light Source

Chris Christou, Pengda Gu, Alun Watkins

Diamond Light Source

Diamond Light Source

- UK national synchrotron light source
- 3 GeV storage ring, 300 mA beam current
- Full energy booster and 100 MeV linac
- Running user beam since 2007, top-up since late 2008
- 2013 statistics:
 - 5088 hours to beamlines
 - > 98% beam delivery
 - RF is source of 60% of all beam trips

The RF Group

- Chris Christou
- Alek Bogusz
- Pengda Gu
- Matt Maddock
- Peter Marten

- Shivaji Pande
- Adam Rankin
- David Spink
- Alun Watkins

SR RF Systems

Filament hours

- Two 4-IOT amplifiers driving cavities for normal operation
- One amplifier for test/conditioning/standby
- 300 mA needs > 50 kW per IOT
- Further spares "on shelf"
- Up to 40,000 hours operation

Other RF Systems

Injector RF

Linac: Thales TH2100 klystrons

- Rated at 37 MW, 100 Hz
- Running at 16 MW, 5 Hz
- Running open loop
- Initial pair of klystrons replaced after 17,000 & 20,000 hours
- Current pair of klystrons have run for over 30,000 hours each
- Manage occasional arcs to minimise effect on machine operation
- Triode gun with dispenser cathode
 - Changed once in August 2013

Booster: Thales TH793

- Single IOT cycling to 50 kW at 5 Hz
- 41,000 filament hours
- "Second hand" spares from SR
- Very reliable at low average power

Machine Reliability

RF faults

2014 so far 19 faults

Cavity conditioning

- Cavities are fully warmed up each shutdown
- RF windows are baked each shutdown
 - Taken to 120°C and held for three days
- Cavities are partially warmed up to 50 K several times each run
 - Every three weeks so far this year
- Pulse conditioning every week in run-time
 - 2.5 MV peak voltage,10% duty cycle (10ms/100ms)
- Pulse conditioning with detuned cavity every week in run-time
 - Detune angle scanned to sweep standing wave in waveguide
- NEG & TSP pumping of RF straight for H and He
 - Operating pressure 1 to 5 x 10⁻¹⁰ mbar at 300 mA
 - TSPs fired every week, NEG cartridges regenerated every shutdown

IOT conditioning

- IOT internal short was the biggest single cause of beam trips in 2013
- Increase in beam current to 350mA was disrupted by IOT reliability
- 350mA requires 65kW per IOT
- Two weeks of 350mA running caused ~1/3 of all IOT trips
- IOT 2/1 was replaced in May 2013

- Condition selected IOTs every shutdown
- Emergency conditioning following ISC fault when appropriate
 - Using in-house spark box
 - Ramp to 45 kV and hold
- 2 ISC trips so far in 2014
- 14 + 6 ISC trips in 2013
- Not tested 350mA in 2014
- High power RF conditioning is an option

IOT fault tolerance

- Can maintain beam when single IOT is switched off
 - 240 mA with IDs, 250 mA without
 - No interlocks violated
- Beam disturbance of several hundred microns in the horizontal plane
- Can we introduce fast switching to give a resilient system?
 - Suitable fast solid state switches available
 - Behlke, ...
- LLRF is critical
 - Speed of response and multiple cavities
 - Protect IOT and save beam within 500 turns

Cavity probe blips

Probe blips

- Appear as fall in cavity voltage
- LLRF increases power
- Can trip on P_{max} or P_{rev} interlock
- Address with LLRF bandwidth control

Long events(~5 μS) can still cause cavity trips

a circuit to detect blips and reduce LLRF gain is being developed

Beam current upgrade

- Desire for storage ring beam current to be raised
 - Driven by ever increasing beamline flux demand
 - Radiation shielding is rated for 500 mA operation
- 500 mA operation requires a third cavity and lower external Q

Typical three cavity configuration 1.4MV, $Q_0 = 6x10^8$, $Q_{ext} = 1.2x10^5$

Detailed three-stub tuner modelling is ongoing

Verification of 3-stub tuner models

- Control of Qext is vital for optimal operation at high power
- Model verification continues
- Note field at coupling tongue
- Need to establish electrical length to tuner

Verification of 3-stub tuner models

Measurements of Qext for three independent stub insertions has allowed exact geometry to be established

Measurements of 3-stub tuner operation now agree well with the model

Stubs can be set for arbitrary beam currents and amplifier powers required for all modes of user beam operation

Cavity 4 procurement

- Cavity 4 contract placed with RI Research Instruments GmbH
- Use SSRF coupler tongue design and CLS pump-out box to give Q_{ext} = 1.2x10⁵
- Vertical test at Cornell University carried out in July 2013
- Rapid conditioning to full field
- Q₀ exceeded specification
- $Q_0 > 1x10^9 \text{ at } V_{acc} < 6.67 \text{ MV/m}$
- $Q_0 > 5x10^8 \text{ at } V_{acc} < 9.33 \text{ MV/m}$

Cavity 4 procurement

- Cavity 4 delivered to DLS in May 2014
 - Currently installed in the RF test bunker
- Acceptance tests have begun
 - First cooldown scheduled for May 13th
 - High power tests to begin in June

Location of new cavity

Are we at risk of catastrophic failure if all three cavities are in a single straight?

Interlock protected neighbouring straights in Diamond's only previous vacuum event

- Put new cavity in remote location?
- Third harmonic cavity in RF straight?

Cryogenic issues for high current operation

As beam current rises and number of insertion devices increases we will bring the new cavity into operation and introduce a third harmonic cavity

What are the implications for the cryogenic system?

- Capacity of installed cryogenic system is 500 W
- Cold Box load is 82% of capacity with 2-cavity 300 mA operation and 1.8 MV on cavity in RF test facility
- Must consider the following factors for high-current operation
 - Losses in third cavity
 - Change in configuration of multichannel lines
 - Introduction of third harmonic cavity
 - Continued operation of cavity in test facility
- If we are to install the new cavity remote from the RF straight
 - Machine restrictions may force us some distance from the cryogenic system
 - We will need another valve box for the remote cavity
- Gas storage space for cool-down of all three cavities will also be an issue

RF noise on infrared beamline

The high voltage power supply for the IOTs is a switched mode supply and as such generates noise on the voltage at the IGBT switching frequency and its harmonics

- Visible in HV spectrum
- Infra-red beamline notice the noise in their interferograms
- Broad-band measurement, so shifting frequency is not an option

Removing the switching noise

Switching noise can be removed by disabling the PWM operation

- Works for klystrons (at SLS) but IOT current drifts with power and system is destabilised during dither at integral module changeover
- Power drawn from IOTs depends on beam current
 - Varies during a fill and at different points in the top-up cycle
- Power drawn from IOTs depends on configuration of insertion devices
 - Out of control of RF group!

Must control switching of integral modules

- Dither must be removed by introducing a large hysteresis in HVPS current-control
- Possibly remove switching entirely and take up slack with LLRF loop
- Occasional shuffling of modules to ensure longevity
 - Weekly during periodic maintenance or during to-up when kickers dominate disturbance

Trials scheduled for June 2014...

Summary

Diamond is a user facility and the RF group must cater to the beamline users

- Reliability is paramount
 - Multiple single points of failure in SR RF system
 - Noise or drifts are noticed immediately by beamlines
 - Injector faults will disrupt top-up
- We are preparing for future machine developments
 - RF system must develop as beam current increases
 - Continuity of supply must be ensured for IOTs, klystrons and critical smaller components

Thank you for your attention

