The Future of Particle Accelerators *The International Linear Collider*

Barry C Barish – Caltech

Tohoku Forum for Creativity Particle Physics and Cosmology after the discovery of the Higgs Boson 21-25 October 2013

Future of Accelerator Based Particle Physics?

Future of Accelerators (eliminate materials!)

Plasma/Laser Wakefield Acceleration

Tohoku -- 21 Oct 13

Compact Acceleration 50 GeV/meter has been achieved

Controlling the beams

Reducing energy spread to ~ percent level

Reducing angular divergence (< 1 degree)

Advanced Accelerator R&D projects

FACET

Location **SLAC National Accelerator** Laboratory **Creates electron wake using** an electron beam in a plasma

Based on previous experiments that doubled the energies of a few electrons—from 42 billion to 85 billion electron volts—in 84 centimeters

Stimulus funds \$14.5 million

Next step/midterm goal: is to create tighter electron bunches and accelerate them from 23 billion to bunches to higher energies, from 46 billion electronvolts in 40 centimeters

BELLA

Location Lawrence Berkeley National Laboratory **Creates electron wake using** a laser beam in a plasma

Based on previous experiments that accelerated tightly packed electron bunches-the kind needed for physics experiments—from zero to 1 billion electron volts in 3 centimeters

Stimulus funds \$20 million

Next step/midterm goal: is to accelerate already-tight electron zero to 10 billion electron volts in 80 centimeters

Accelerators: Economic Impact

- Total built to date >24 000, with >18 000 in operation
- Sales increasing ~10% per year
- Presently >70 accelerator vendors worldwide
- Vendors primarily in US, Europe and Japan, but growing in China, Russia and India
- Equipment sales ~\$3B per year worldwide

All the products that are processed, treated or inspected by particle beams have an annual value exceeding \$500B

Exploring the Terascale *the tools*

• The LHC

- » It is leading the way and has large reach
- » Quark-quark, quark-gluon and gluongluon collisions at 0.5 - 5 TeV
- » Broadband initial state
- A Lepton Collider (e.g. ILC or ?)
 - » A second view with 'high precision'
 - » Electron-positron collisions with fixed energies
 - » Well defined initial state
- Together, these two types of accelerators are our tools for uncovering physics at the terascale

LHC – CERN Accelerator Complex

Three Generations of e⁺e⁻ Colliders *The Energy Frontier*

Circular or Linear Collider?

A Global Initiative for an ILC

International Committee for Future Accelerators (ICFA) representing major particle physics laboratories worldwide.

- Determined ILC physics design parameters
- Chose ILC accelerator technology (SCRF)
- Formed Global Design Effort and Mandate (TDR)

ILCSC/ICFA Parameters Studies

physics driven input

Key Parameters

- » Luminosity $\rightarrow \int Ldt = 500 \text{ fb}^{-1} \text{ in 4 years}$
- » E_{cm} adjustable from 200 500 GeV
- » Ability to scan between 200 and 500 GeV
- » Energy stability and precision below 0.1%
- » Electron polarization of at least 80%

Options

- The machine must be upgradeable to 1 TeV
- Positron polarization desirable as an upgrade

Luminosity & Beam Size

$$L = \frac{n_b N^2 f_{rep}}{2\pi\sigma_x \sigma_y} H_D$$

• f_{rep} * n_b tends to be low in a linear collider

	L	f _{rep} [Hz]	n _b	N [10 ¹⁰]	σ _x [μm]	σ y [μm]
ILC	2x10 ³⁴	5	3000	2	0.5	0.005
SLC	2x10 ³⁰	120	1	4	1.5	0.5
LEP2	5x10 ³¹	10,000	8	30	240	4
PEP-II	1x10 ³⁴	140,000	1700	6	155	4

 Achieve luminosity with spot size and bunch charge

Achieving High Luminosity

- Low emittance machine optics
- Contain emittance growth
- Squeeze the beam as small as possible

HEP Lab-driven R&D programs

 Room temperature copper structures (KEK and SLAC)

OR

Superconducting RF cavities (DESY)

ITRP in Korea

International Technology Recommendation Panel Meeting August 11 ~ 13, 2004. Republic of Korea

GDE – Mandate (7-Feb 06)

Global Design Effort

- The Mission of the GDE
 - Produce a design for the ILC that includes a detailed design concept, performance assessments, reliable international costing, an industrialization plan, siting analysis, as well as detector concepts and scope.
 - Coordinate worldwide prioritized proposal driven R & D efforts (to demonstrate and improve the performance, reduce the costs, attain the required reliability, etc.)

7-Feb-06

GDE Report to ILCSC

2

GDE -- Design a Linear Collider

Design decisions accepted globally!

Push – Pull Detector Concept

Both detectors without platforms

Both detectors with platforms

• Vibration stability will be one of the major criteria in eventual selection of a motion system design

RDR Design Parameters

Max. Center-of-mass energy	500	GeV
Peak Luminosity	$\sim 2 \times 10^{34}$	$1/cm^2s$
Beam Current	9.0	mA
Repetition rate	5	Hz
Average accelerating gradient	31.5	MV/m
Beam pulse length	0.95	\mathbf{ms}
Total Site Length	31	km
Total AC Power Consumption	~ 230	MW

Reference Design - 2008

Major R&D Goals for Technical Design

SCRF

- High Gradient R&D globally coordinated program to demonstrate gradient by 2010 with 50% yield; improve yield to 90% by TDR (end 2012)
- Manufacturing: plug compatible design; industrialization, etc.
- Systems tests: FLASH; plus NML (FNAL), STF2 (KEK) post-TDR

Test Facilities

- ATF2 Fast Kicker tests and Final Focus design/performance EARTHQUAKE RECOVERY
- CesrTA Electron Cloud tests to establish damping ring parameters/design and electron cloud mitigation strategy
- FLASH Study performance using ILC-like beam and cryomodule (systems test)

1.3 GHz Superconducting RF Cavity

- solid niobium
- standing wave
- 9 cells
- operated at 2K (LHe)

35 MV/m
 Q₀ ≥ 10¹⁰

Globally Coordinated SCRF R&D

Figure 1.2-1: A TESLA nine-cell 1.3 GHz superconducting niobium cavity.

 Achieve high gradient (35MV/m); develop multiple vendors; make cost effective, etc

- Focus is on high gradient; production yields; cryogenic losses; radiation; system performance

The Quest for Higher Gradient

Progress in Cavity Gradient Yield

Production yield: 94 % at > 28 MV/m,

Average gradient: 37.1 MV/m

FLASH at DESY: 9mA Experiment

klystron overhead etc.

Development (LLRF & controls):

- tuning algorithms
- automation
- quench protection etc.

European XFEL at DESY

The ultimate 'integrated systems test' for ILC. Commissioning with beam 2nd half 2015

ATF-2 – final focus tests March 2013 <65 nm achieved

Test bed for ILC final focus optics

- strong focusing and tuning (37 nm)
- beam-based alignment
- stabilisation and vibration (fast feedback)
- instrumentation

Critical R&D: Electron Cloud

- Extensive R&D program at CESR, Cornell (CesrTA)
- Instrumentation of wiggler, dipole and quad vacuum chambers for e-cloud measurements
- low emittance lattice with goal: reliable extrapolations to ILC

Critical R&D: Electron Cloud

- Extensive R&D programme at CESR, Cornell (CesrTA)
- Instrumentation of wiggler, dipole and quad vacuum chambers for e-cloud measurements
- Iow emittance lattice
- Example: wiggler vacuum chamber
- Benchmarking of simulation codes
 - » cloud build-up
 - » beam dynamics (head-tail instabilities)

Baseline Mitigation Plan

EC Working Group Baseline Mitigation Recommendation

	Drift*	Dipole	Wiggler	Quadrupole*
Baseline Mitigation I	TiN Coating	Grooves with TiN coating	Clearing Electrodes	TiN Coating
Baseline Mitigation II	eline Solenoid Windings Antechamber Antechamber			
Alternate Mitigation	NEG Coating	TiN Coating	Grooves with TiN Coating	Clearing Electrodes or Grooves

*Drift and Quadrupole chambers in arc and wiggler regions will incorporate antechambers

- Preliminary CESRTA results and simulations suggest the presence of *subthreshold emittance growth*
 - Further investigation required
 - May require reduction in acceptable cloud density ⇒ reduction in safety margin
- An aggressive mitigation plan is required to obtain optimum performance from the 3.2km positron damping ring and to pursue the high current option

Baseline for the TDR

LHC

The Higgs has been discovered. What about supersymmetry?

ATLAS: Higgs Evidence (γγ)

- p₀ value for consistency of data with background-only: ~ 10⁻¹³ (7.4σ observed) for the combined 7 TeV and 8 TeV data; (4.3σ expected) (minimum found at m_{yy} = 126.5 GeV)
- Establishes the discovery of the new particle in the γγ channel alone

How about the other Higgs characteristics?

- Spin (must be spin 0)
- Coupling (couples to mass)
- Are there more Higgs particles?
- What is the self-coupling
- etc

These questions will be a major focus of the LHC program after the upgrade; but so far, LHC results are consistent with a simple Higgs

ATLAS: Spin 0?

CMS: Higgs coupling vs mass

Higgs couples to mass !

Is there a high mass Higgs?

High Mass Higgs Searches

High mass Higgs searches with SM channels WW, ZZ updated with 2012 Statistics

Sensitivity reaches now up to $\sim 1 \text{ TeV}$

Interpretation of the data in eg EW-singlet models; Benchmark models proposed by the LHC XS WG: See CMS-PAS-13-008 CMS-PAS-13-014

Tohoku -- 21 Oct 13

What about supersymmetry?

We expect a rich spectrum of new particle

squarks and sgluons heavy yielding long decay chains ending with LSP neutrilino

Supersymmetric Particles NOT ruled out

CMSSM in context

 LHC excludes squarks and gluinos > 1 TeV and > 1.8 TeV respectively in the CMSSM

 But, this is only really probing a tiny part of a large parameter space

Incandela

ILC Physics Potential

Measurement errors of Higgs couplings

LHC 14 TeV 3000 fb-1 and ILC 500 GeV 500 fb-1

Klute et al arXiv:1301/1322v2

> 500 fb⁻¹ of ILC@500 GeV 1.8 E34/cm²s : ~3 years (1 yr = 1E7 s)

Apart from γ , ILC errors are $1/3 \sim 1/10$ of LHC

(statistical equivalent: 1~2 orders of magnitude more- at about the same cost)

- LHC may improve systematics (both theoretical and experimental)
- ILC by full simulation with bkgs. May improve analysis methods

Great prospect for HEP : ILC and LHC running in parallel!

ILC Physics Potential

 \Box δλ/λ = 17% (2 ab⁻¹@ 1 TeV)

ILC Physics Potential

ILC 250~500 GeV

- Higgs
 - Generate ~30K Higgs every year (w/ pol)
 - + 5 σ Higgs discovery sensitivity in \sim 1 day
 - Higgs Brs (table later)
 - $H \rightarrow cc$, invisible; & model independent
 - $\Gamma_{\rm tot}$ to 5%
 - Br(H \rightarrow WW) & g(HWW) by e+e- $\rightarrow \nu\nu$ H
 - Br(H \rightarrow ZZ) & g(HZZ) by e+e- \rightarrow HZ
 - CP to 3~4% (on mixing coeff)
- top
 - mt(msbar) to 100 MeV
 - Anomalous ttZ, tbW, ttg coupl
- New physics through SM
 - Composite Higgs scale to 45 TeV
 - Anomalous WWV coupl
- New unexpected particles!

ILC Technical Design Report Layout

Central Region

5.6 km region around IR

Systems:

- » electron source
- » positron source
- » beam delivery system
- » **RTML** (return line)
- » IR (detector hall)
- » damping rings

Complex and crowded area

Tohoku -- 21 Oct 13

common tunnel

Luminosity Upgrade

Concept: increase n_b from 1312 \rightarrow 2625
 » Reduce linac bunch spacing 554 ns \rightarrow 336 ns

• Doubles beam power \rightarrow ×2 L = 3.6×10³⁴ cm⁻²s⁻¹

- AC power: 161 MW \rightarrow 204 MW (est.)
 - » shorter fill time and longer beam pulse results in higher RF-beam efficiency (44% → 61%)

Energy (TeV) upgrade

Upgrades - Energy

Energy upgrade scenarios – Chapter 12

		$500{ m GeV}$	TeV Upgrade			
		Baseline	Scenario A	Scenario B		Scenario C
				upgrade	base	
Energy range	${\rm GeV}$	15 - 250	15 - 500	15 - 275	275 - 500	15 - 500
Gradient	MV/m	31.5	31.5	45	31.5	45
Num. of cavities		7400	15280	8190	7090	10700
				total cavities: 15280		
Linac length	km	12	25	9.5	11.5	17.5
				total length: 21.0		

- Upgrading the beam energy will require extending the main SCRF linacs to provide the additional 250 GeV per beam.
- The beam current for the TeV upgrade (7:6 mA), less than that for the luminosity upgrade (8:8 mA)
- The cost of an energy upgrade is completely dominated by the extension of the main linacs and the time-dependent choice of accelerating gradient. (present three scenarios)

The International Linear Collider

- International Consensus for the next energy frontier particle accelerator (eg. TeV scale e+e-)
- ICFA Determined the physics goals to complement LHC; chose the technology superconducting RF; oversaw the design effort
- Mature technical design; cost; technical readiness June 2013
- Lyn Evans (CERN LHC)
- Project Director) became
- ILC project leader

Higgs Factory - Staged ILC

250 GeV (Higgs Factory) → 500 GeV baseline → 1 TeV

- <u>TDR Table 12.1</u> presents primary parameters for a 250 GeV CM first stage, the luminosity upgrade for the 500 GeV baseline machine, and the two parameter sets for the TeV upgrade: low Beamstrahlung (A) and high Beamstrahlung (B). The baseline 500 GeV parameters are included for reference.
- The initial 250 GeV stage (Light Higgs Factory) needs a re-evaluation of machine parameters for cost-performance optimization at that energy.

Japanese plans: ILC and a "Science City"

Staged ILC – Higgs Factory

 Staged proposal, beginning as a Higgs factory, increases to top, 500 GeV, 1 Tev

