Using a Razor to Unravel Difficult LHC Signatures

Matthew R Buckley
Rutgers University

What to look for next?

- We all know what the LHC didn't find.
- No strongly interacting particles decaying to jets and large MET
- No evidence of non-Standard Higgs

- The parameter space ruled out by the LHC covers much of the "Standard" MSSM.
- One thing the LHC appears to be telling us to be that the new physics looks nothing like this.

What to look for next?

- Things that we are not yet as sensitive to:
- 3rd generation partners
- Degenerate spectra
- Direct electroweak production
- Displaced vertices
- Things I haven't thought of yet
- Many of these can be well-motivated by theory, and many can be searched with even in the 8 TeV data

Sleptons and Charginos

- Very difficult signatures at the LHC

$$
\begin{aligned}
& p p \rightarrow \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-} \rightarrow\left(W^{+} \tilde{\chi}_{1}^{0}\right)\left(W^{-} \tilde{\chi}_{1}^{0}\right) \rightarrow\left(\ell^{+} \nu \tilde{\chi}_{1}^{0}\right)\left(\ell^{-} \bar{\nu} \tilde{\chi}_{1}^{0}\right) \\
& p p \rightarrow \tilde{\ell}^{+} \tilde{\ell}^{-} \rightarrow\left(\ell^{+} \tilde{\chi}_{1}^{0}\right)\left(\ell^{-} \tilde{\chi}_{1}^{0}\right)
\end{aligned}
$$

- Low rates, high backgrounds which have very similar kinematics to signal.

ATLAS and CMS searches

- Note that many of these searches set leptonic BR of charginos to 1.
- Or look for several new particles in a cascade decay.

ATLAS and CMS searches

- Searches for events like $p p \rightarrow \tilde{\ell}^{+} \tilde{\ell}^{-} \rightarrow\left(\ell^{+} \tilde{\chi}_{1}^{0}\right)\left(\ell^{-} \tilde{\chi}_{1}^{0}\right)$ typically use variables sensitive to the mass difference

$$
M_{\Delta} \equiv \frac{m_{\tilde{\ell}}^{2}-m_{\tilde{\chi}_{1}^{0}}^{2}}{m_{\tilde{\chi}_{1}^{0}}}
$$

- Can attempt to correct for ISR jets which presumably don't have connection to the new physics.
- e.g. the variable used by CMS, $M_{C T \perp}$, is $M_{C T}$ calculated along the direction perpendicular to the system recoiling against ISR jets.
- Look for endpoints at $M_{C T \perp}, M_{T 2} \sim M_{\Delta}$

Can the Razor do better?

- Original Razor variables designed to look for new physics in jets+MET

- Divide events into two "mega-jets" and make an attempt to boost into a frame that approximates the pair-production frame.
- If these approximations hold, then Razor variables approximate M_{Δ}
$M_{R}^{2}=\left(E_{1}+E_{2}\right)^{2}-\left(q_{1}^{z}+q_{2}^{z}\right)^{2},\left(M_{T}^{R}\right)^{2}=\frac{1}{2}\left[\boldsymbol{E}_{T}\left(q_{1 T}+q_{2 T}\right)-\vec{E}_{T} \cdot\left(\vec{q}_{1 T}+\vec{q}_{2 T}\right)\right]$

The Super Razor

Fiele Everything, We're Doing Five Blades

COMMENTARY - Opinion • Business • ISSUE 40-07 - Feb 18, 2004
By James M. Kilts, CEO And President,
The Gillette Company

James M. Kilts

Would someone tell me how this happened? We were the Fell vanguard of shaving in this country. The Gillette Mach3 was the razor to own. Then the other guy came out with a three-blade razor. Were we scared? Hell, no. Because we hit back with a little thing called the Mach3Turbo. That's three blades and an aloe strip. For moisture. But you know what happened next? Shut up, I'm telling you what happened-the bastards went to four blades. Now we're standing around with our

The Super Razor

- Not enough information to reconstruct the event.
- Make a series of approximations:
- Invisible invariant mass = visible invariant mass
- Results independent of
 unknown CM z-momentum
- All jets unrelated to physics of interest

The Super Razor

- Construct a series of boosts that approximate the true boosts from the lab, to the CM frame, to the decay frames

Constructing the CM frame

- Boost against the extra jets in the event

$$
\vec{J}_{T}=\sum \vec{p}_{j}=-\vec{E}_{T}^{\mathrm{miss}}-\vec{q}_{1 T}-\vec{q}_{2 T}
$$

- Approximating the correct boost from lab to CM frame requires a guess as to the CM invariant mass. There's a unique choice:

$$
\frac{\hat{s}_{R}}{4}=\frac{1}{2}\left(M_{R}^{2}+\vec{J}_{T} \cdot\left(\vec{q}_{1}+\vec{q}_{2}\right)+M_{R} \sqrt{M_{R}^{2}+\left|\vec{J}_{T}\right|^{2}+2 \vec{J}_{T} \cdot\left(\vec{q}_{1}+\vec{q}_{2}\right)}\right)
$$

- This is a "jet-corrected" razor variable.
- Now can also construct our approximate boost $\vec{\beta}_{R}$

$$
\vec{\beta}_{R}=\frac{\left\{-\vec{J}_{T}, p_{z}^{R}\right\}}{\sqrt{\left|\vec{J}_{T}\right|^{2}+\left|p_{z}^{R}\right|^{2}+\hat{s}_{R}}}
$$

The Super Razor

Getting to the decays

- From the approximate CM frame, only one choice of boost that has the right symmetries to approximate $\pm \vec{\beta}$ decay

$$
\vec{\beta}_{R+1}=\frac{\vec{q}_{R 1}-\vec{q}_{R 2}}{E_{R 1}+E_{R 2}}
$$

- Correct boosts give $\sqrt{\hat{s}}=2 \gamma^{\text {decay }} m_{\tilde{\ell}}$, so define

$$
\sqrt{\hat{s}_{R}}=2 \gamma_{R+1} M_{\Delta}^{R}
$$

Getting to the decays

- From the approximate CM frame, only one choice of boost that has the right symmetries to approximate $\pm \vec{\beta}$ decay

$$
\vec{\beta}_{R+1}=\frac{\vec{q}_{R 1}-\vec{q}_{R 2}}{E_{R 1}+E_{R 2}}
$$

- Correct boosts give $\sqrt{\hat{s}}=2 \gamma^{\text {decay }} m_{\tilde{\ell}}$, so define

A New Angle

- So far, these are "jet-corrected" versions of the original razor variables. Sensitive to M_{Δ}
- Not good when $M_{\Delta} \rightarrow m_{W}$
- But we also have the approximations of the boosts.

MadGraph+PGS

- Notice that, as $m_{\tilde{\chi}_{1}^{o}} / m_{\tilde{\ell}} \rightarrow 1$, we overestimate the boost β_{R}
- Can define an $\Delta \phi_{R}^{\beta}$ angle between the boost direction and R-frame $q_{1}+q_{2}$

A New Angle

- So far, these are "jet-corrected" versions of the original razor variables. Sensitive to M_{Δ}
- Not good when $M_{\Delta} \rightarrow m_{W}$
- But we also have the approximations of the boosts.

- Notice that, as $m_{\tilde{\chi}_{1}^{1}} / m_{\tilde{\ell}} \rightarrow 1$, we overestimate the boost β_{R}
- Can define an $\Delta \phi_{R}^{\beta}$ angle between the boost direction and R-frame $q_{1}+q_{2}$
$\underset{\sqrt{\mathrm{s}}=8 \mathrm{TeV}}{\text { MadGraph }+ \text { PGS }} \quad \mathrm{pp} \rightarrow \tilde{l} \tilde{l} ; \tilde{l} \rightarrow l \widetilde{\chi}_{\chi}^{0} ; \mathrm{m}_{\tilde{l}}=150 \mathrm{GeV}$

One Last Angle

- Last piece of information we haven't used $\left.i \leqslant E_{1}-E_{2}\right)^{2}$
- Define an "angle"

$$
\left|\cos \theta_{R+1}\right|=\frac{\left(E_{1 R}-E_{2 R}\right)^{2}}{\hat{s}_{R} / 4-\left(M_{\Delta}^{R}\right)^{2}}
$$

- Thought of as an angle, it is the opening angle between boost $\vec{\beta}_{R+1}$ and the momentum of the lepton q_{1} in the approximate decay frame $R+1$.
- Perhaps easier to think of it as the energy difference of the two visible leptons in the R frame.

One Last Angle

$$
\left|\cos \theta_{R+1}\right|=\frac{\left(E_{1 R}-E_{2 R}\right)^{2}}{\hat{s}_{R} / 4-\left(M_{\Delta}^{R}\right)^{2}}
$$

- This picks up some helicity information:
- Direction of leptons from scalar decay uncorrelated.
- In R-frame, $E_{1 R}, E_{2 R}$ should be relatively uncorrelated.
- Unless the scalars are highly boosted.
- Vector boson decay products are correlated with momentum of parents.
- Leptons correlated in R-frame, resulting in more events with $E_{1 R}, E_{2 R}$ similar, and $\left|\cos \theta_{R+1}\right|$ near zero.

One Last Angle

$$
\left|\cos \theta_{R+1}\right|=\frac{\left(E_{1 R}-E_{2 R}\right)^{2}}{\hat{s}_{R} / 4-\left(M_{\Delta}^{R}\right)^{2}}
$$

A Recap

- Expand the original "Razor" concept to attempt to reconstruct the entire production and decay chain.
- This gives us two variables sensitive to $M_{\Delta}: \hat{s}_{R}, M_{\Delta}^{R}$
- (These are correlated, so we chose M_{Δ}^{R})
- A variable sensitive to $m_{\tilde{\chi}_{1}^{0}} / m_{\tilde{\ell}}: \Delta \phi_{R}^{\beta}$
- A variable that picks up some spin-related information: $\left|\cos \theta_{R+1}\right|$
- Throw all this information in to a multi-dimensional analysis of di-lepton events, looking for slepton or chargino production.
- Major backgrounds $W W, t \bar{t}, Z / \gamma^{*}$

Predicted Reach

- We compare to ATLAS and CMS search strategies.
- Can also use our new razor variables to relax certain selection cuts without sacrificing S / B
- Replace a cut on \not_{T} with cuts on razor boosts and $\Delta \phi_{R}^{\beta}$

Predicted Reach

Predicted Reach

- Take a slice of constant $m_{\tilde{\ell}} / m_{\tilde{\chi}_{1}^{ \pm}}$
- Biggest advances are due to inclusions of variables that are not sensitive to M_{Δ}

What's Next?

- As you can see, moderate improvements over the ATLAS variable $M_{T 2}$, assuming a shape-analysis.
- Near degeneracy line, we're mostly limited by trigger efficiencies.
- Since $\Delta \phi_{R}^{\beta}$ depends on $m_{\tilde{\chi}_{1}^{0}} / m_{\tilde{\ell}}$, not M_{Δ}, this is the region we'd expect it to do the most good.
- Adopt mono-jet searches for dark matter for triggering? Use low p_{T} leptons in super-razor search?
- Apply super-razor to other final states $\tilde{\tau}^{+} \tilde{\tau}^{-}$

$M_{T 2}$

$m_{T 2}^{2}\left(\mu_{\chi}\right)=\min _{\vec{p}_{T}\left[\chi_{1}\right]+\vec{p}_{T}\left[\chi_{2}\right]=\dot{k}_{T}} \max \left\{m_{T}^{2}\left(\vec{p}_{T}\left[q_{1}\right], \vec{p}_{T}\left[\chi_{1}\right], \mu_{\chi}\right), m_{T}^{2}\left(\vec{p}_{T}\left[q_{2}\right], \vec{p}_{T}\left[\chi_{2}\right], \mu_{\chi}\right)\right\}$

- Pick a test mass, run over possible missing momentum configurations.

$M_{C T \perp}$

- "Contra-transverse" mass $M_{C T}^{2}=2\left(p_{T 1} p_{T 2}-\vec{p}_{T 1} \cdot \vec{p}_{T 2}\right)$
- From the jet boost direction $-\vec{J}=\vec{p}_{T 1}+\vec{p}_{T 2}+\vec{E}_{T}$ define the $M_{C T}$ variable using only momentum components perpendicular to \vec{J}

