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absolute masses? 

The questions 
mass ordering? 
(“hierarchy”) 

|U𝜇3| = |U𝜏3| ? 
(“maximal mixing”) 

UPMNS has “first-order” 
structure, contrast with UCKM 

(model building, unification, 
new physics, ...) 

 

unitary? 

leptonic CP violation? 

Majorana or Dirac? 

Light sterile states? 
(experimental anomalies) 

GUT-scale physics? 
(see-saw connection) 

astrophysics/cosmology 
(solar 𝜈, supernovae, DM, 
ultra-high-energy 𝜈, C𝜈B) 

…and more (geoneutrinos, 
nuclear processes, 𝜈 interactions) 
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“Solar” parameters 𝜃12 andm2
 21 

m2  = (7.50        ) ×10-5 eV2 
21 –0.20 +0.19 

sin2(2𝜃12) =  0.857 –0.025 +0.023 

Measured solar 𝜈 fluxes 

KamLAND L/E oscillation signature 

• SNO (solar), Super-K (solar), KamLAND 

(reactor) and others 

• No big change expected from current experiments 

   (Future reactor expts. [e.g. JUNO] in the works) 
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Combination 



• Super-K (atmospheric), MINOS (accelerator), 

T2K (accelerator) and others 

• Measurements still rolling in (see later). 
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“Atmospheric” parameters 𝜃23 and|m2 | 32 

|m2  | = (2.32        ) ×10-3 eV2 
32 –0.08 +0.12 

sin2(2𝜃23)  > 0.95  (90% C.L.) 

Simple but incomplete 
way of summarizing 
things (more later…) 
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Recent prize: 𝜃13 

• Last mixing angle to be bracketed.  Previously just 
known to be small relative to 𝜃12, 𝜃23 

• Reactor expts. using inverse beta decay:  𝜈͞  e + p  e+ + n 
   prompt e+ signal, delayed n-capture signal 

Outer buffer region 
surrounded by PMTs Gamma catcher 

(undoped scintillator) 

Target region 
(Gd-doped scintillator) 
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a bit of 𝜈e? 

(Double Chooz) 
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𝜃13 from reactor measurements 

Daya Bay: 

Double Chooz: 

RENO: 

Multiple detector sites, 8 detectors in total, rate+shape signal extraction. 

Best precision for this generation of experiments (4% by end of 2015). 

sin2(2𝜃13) =  0.090 – 0.009 + 0.008 

FD only so far, ND running to start this year. 

Recent update: n-Gd, n-H captures and reactor rate modulation (bckgnd control) 

sin2(2𝜃13) =  0.097 ± 0.035 

2 detectors, rate-only analysis so far.  

7% measurement by end of 2015. 

sin2(2𝜃13) =  0.100 ± 0.018 
Daya Bay data as example. 

Deficit consistent with oscillations. 

Daya Bay 



Long-baseline experiments 

 𝜃13>0 ⇒ NO𝜈A, T2K, (MINOS) can probe 
mass hierarchy, 𝛿, 𝜃23 octant 

  Also: |m2  |, sin2(2𝜃23), 𝜈/𝜈͞   comparisons, 
 steriles, NSI, cross sections, supernova 
 

 LBL experiments with different goals: 
    OPERA   (𝜈𝜏 appearance, ToF, …) 
    ICARUS   (LAr R&D, 𝜈𝜏 appearance, steriles, …) 

 Have to leave out for time… 
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MINOS 

T2K (Super-K) 

NO𝜈A 

OPERA ICARUS 

32 
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MINOS 
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MINOS Far Detector 

Fermilab to Soudan, 735 km 
 

Near and far detectors: 
Steel/scintillator magnetized 

tracking calorimeters 

 



NuMI 𝜈𝜇 disappearance 
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New in 2013:  Full MINOS data set combined in 3-flavor fit 

 𝜈𝜇 and 𝜈͞  𝜇 disappearance (NuMI beam)  

 𝜈𝜇 and 𝜈͞  𝜇 disappearance (atmospheric 𝜈) 

 𝜈e and 𝜈͞  e appearance (NuMI beam)  

𝜈e appearance 
(most sensitive 𝛼LEM bin shown here) 
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 Confidence intervals in a portion 

of parameter space 

    (𝜃13 and CP phase 𝛿 marginalized 
     out for clarity) 
 

|m2
  | precision  =  4% 

m2  
 / |m2  |  =  3% 

⇒ 2𝜈 approximations 
are behind us 

32 

32 21 



“Medium energy” NuMI 

MINOS  MINOS+, 
    Higher neutrino energies: precisions tests 
    and searches (examples at right) 
 
NuMI upgraded to 700 kW 
(though still operating at ~400 kW 
pending commissioning 
and Booster RF upgrades) 
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sterile 𝜈 signature at MINOS+ 

precision tests of 3-flavor picture 



NO𝜈A 

Fermilab 

NO𝜈A Far Detector (Ash River, MN) 
MINOS Far Detector (Soudan, MN) 

 Measure 𝜃13 via 𝜈e appearance 

 Determine the 𝜈 mass hierarchy 

 Search for 𝜈 CP violation 

 Determine the 𝜃23 octant 

Using  𝜈𝜇→𝜈e  ,  𝜈͞ 𝜇→𝜈͞ e … 

A broad physics scope 

 Atmospheric parameters: 
precision measurements of 𝜃23 , 
|m2  |.   (Exclude 𝜃23=𝜋/4?) 

 Over-constrain the atmos. sector 
(four oscillation channels) 

Using  𝜈𝜇→𝜈𝜇  ,  𝜈͞ 𝜇→𝜈͞ 𝜇 … 

32 

 Neutrino cross sections at 
the NO𝜈A Near Detector 

 Sterile neutrinos 

 Supernova neutrinos 

 Other exotica 

Also … 
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To APD 

4 cm ⨯ 6 cm 

1
5

6
0

 cm
 

A NO𝜈A cell NO𝜈A detectors 

Fiber pairs 
 from 32 cells 

32-pixel APD 

Far detector: 
   14-kton, fine-grained, 
   low-Z, highly-active 
   tracking calorimeter 
      → 360,000 channels 

Near detector: 
   0.3-kton version of 
   the same 
      → 18,000 channels 

Extruded PVC cells filled with 
11M liters of scintillator 

instrumented with 
𝜆-shifting fiber and APDs 
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NO𝜈A installation near completion. 
At right: cosmic event in partial FD. 
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Long baseline  hierarchy sensitivity 

 

At right: Example point in 𝜈 
parameter space 
   Simultaneously break 𝜈3 flavor 
   degeneracy (“𝜃23 octant”), 
   determine mass hierarchy, 
   and constrain CP phase 𝛿. 

 

 

At left: 𝜈𝜇 CC disappearance  
    (maximal and non-maximal 
    test cases shown) 
 

Probe down to 1% non-max. mixing 
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Long baseline  hierarchy sensitivity 

 

At right: “degenerate” point 
   Hierarchy and 𝛿 information 
   now correlated.  Octant 
   preference still established. 

 

 

At left: 𝜈𝜇 CC disappearance  
    (maximal and non-maximal 
    test cases shown) 
 

Probe down to 1% non-max. mixing 

 



T2K 

J-PARC 

Super-K 

 Tokai to Kamioka (295 km) 

 Neutrino beam from J-PARC 

 Existing far detector: Super-K 

 INGRID and ND280 near detectors 
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Super-K detector (far detector for T2K) T2K 
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K. Abe et al. (T2K) 
arXiv: 1311.4750 
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 First conclusive observation (7.3𝜎) of 𝜈𝜇𝜈e appearance 
   Consistent with 𝜈͞ e (reactor) disappearance results 

 Only 10% of eventual data set 

 “Short” 295-km baseline: 
   Important role in global 𝜈 fits 
   (minimal hierarchy dependence) 

 𝜈𝜇 CC channel: 
   Probe non-max. mixing to ~1% 
   (First results out) 



Neutrino mass 
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n p 

e- 

× 𝜈 

n p 

e- 

 Cosmological observations  sum of neutrino masses. 
    Best limits so far: mi  < 0.2-0.6 eV 
  

 𝛽-decay kinematic measurement  effective electron neutrino mass, a.k.a. m𝛽: 
 
   

 0𝜈𝛽𝛽 decay process (if Majorana-𝜈-mediated)  effective mass m𝛽𝛽: 

0𝜈𝛽𝛽 

kinematic measurement 
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KATRIN 

 Only current kinematic 𝜈 mass experiment 
   (several others in R&D phases) 

 Large electrostatic filter 
for 𝛽 spectrometry 

 Partial loading this year, full tritium run in 2015 

spectrometer en route to Karlsruhe 

5𝜎 reach for m𝛽 = 0.35 eV 



Many ...experiments 
Many ...techniques 
Many ...isotopes 
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Example 0𝜈𝛽𝛽 signature 
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EXO-200 

NEMO 

CUORE 

KamLAND-Zen 



Experiment Location Isotope Technique       
CUORE LNGS 130Te bolometer 

EXO-200 WIPP 136Xe liquid TPC  ← early results below! 

GERDA LNGS 76Ge ionization  

KamLAND-Zen Kamioka 136Xe liquid scintillator ← early results below! 

Majorana SUSEL 76Ge ionization 

SNO+ Sudbury 150Nd,130Te liquid scintillator 

 

 

Experiments funded, under construction, or operating… 
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EXO-200 

       ←0𝜈𝛽𝛽 window 

Controversial observation claim (KK et al., 

Phys. Lett. B 586, 198 (2004)) now refuted by 

EXO-200 and KamLAND-Zen results for any 

available matrix element calculations 
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Matrix element calculations 

lead to large uncertainties in 

m𝛽𝛽 (factors of 2 or 3). 

 

Approx. reach of current 

generation expts. 

 

Possible SNO+ reach: novel 
130Te loading method 

(3% loading!) 

     Into inverted hierarchy range 

 

 
m

𝛽
𝛽
 (

eV
) 

KamLAND-Zen, EXO-200 

 

Multiple techniques, isotopes essential. 
   

It will remain unclear for some time which approaches will 

survive through IH and into NH territory. 
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LSND, MiniBooNE, reactor, 71Ga anomalies 
 In mid-90s, LSND reported 𝜈͞ 𝜇→𝜈͞ e  signal 

incompatible with 3-𝜈 oscillation picture (3.8𝜎) 

 Sterile neutrinos?  (Need multiple sterile states to 
accommodate all of today’s data.) 

 Many null results since (KARMEN, Bugey, Super-K, 
MINOS, ICARUS) but none completely cover 
LSND allowed region in (3+1)-𝜈 parameter space 

MiniBooNE: 
    Designed to cover LSND allowed region 
 
First result: No evidence for oscillations 
Second result: Lower energy threshold, excess 
    seen at low energy (not a great match to osc.)  
Third result (with antineutrinos): Similar excess 



 Also: new reactor flux predictions suggest unexplained deficit in past reactor data  

 Also: gallium solar experiments see unexplained deficit in 𝜈e calibration runs 

 

  
 

 Meanwhile, for MiniBooNE low-E excess: MicroBooNE 
      70-ton LAr TPC: distinguish electron or photon source of MiniBooNE excess 

      Construction well-underway at Fermilab.  Operations this year.  

 

(event display from earlier 

ArgoNeuT LAr TPC) 
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MicroBooNE 

Will need future experiments with in-detector 

L, E signatures to resolve all this. 



Had to skip entirely… 

 

• 𝜈-nucleus scattering (many experiments!) 

• Cosmological/astrophysical 𝜈 (many experiments!)  
 e.g., IceCube’s recent detection of 28 neutrinos above 30 TeV 
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Extras 
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Oscillations 

0 

• Neutrino flavor oscillations – access to UPMNS and 𝜈 mass-squared splittings 

• In past decade, phenomenon confirmed and the texture of 𝜈 mixing extracted: 

 Experiments using solar, atmospheric, reactor, and accelerator 𝜈 sources 
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Sun, imaged with 𝜈 Cosmic rays Daya Bay NPP Fermilab 



𝜃13 – the great facilitator 

 Non-zero 𝜃13 definitively established; Daya Bay with most precise value: 

       sin2(2𝜃13) = 0.090 
 

 Makes feasible long-baseline measurements of… 

       neutrino mass hierarchy 

 Potential implications in: 0𝜈𝛽𝛽 data and Majorana nature of 𝜈; approach to m𝛽; 

 cosmology; astrophysics; theoretical frameworks for mass generation, quark/lepton 

 unification; Is the lightest charged lepton associated with the heaviest light neutrino?  

        CP phase 𝛿 

 …: cosmological baryon asymmetry through see-saw/leptogenesis; fundamental 

 question in the Standard Model (i.e., is CP respected by leptons?) 

        𝜈   flavor mixing 

 …: Is 𝜈3 more strongly coupled to 𝜇 or 𝜏 flavor?; frameworks for mass generation, 

 quark/lepton unification 

 
  

3 
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– 0.008 
+ 0.009 
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Double Chooz RENO 



Double Chooz 

reactor rate 

modulation result 
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Daya Bay 
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MINOS Far Detector 

 Magnetized steel/scintillator tracking 
calorimeters 
    “Identical” near and far detectors 

 Original aims: accelerator-based 
confirmation of “atmospheric” 𝜈 
oscillation; precision measurements 
of mixing and mass splitting 

 Designed for 𝜈𝜇𝜈𝜇  survival channel 

MINOS 
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(Monte Carlo) 

Ereco  = 14.1 GeV 

Ereco  = 7.8 GeV 

Ereco  = 8.0 GeV 

NC 

𝜈𝜇 CC 

𝜈e CC 



Neutrinos Anti-Neutrinos 
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appearance channel 
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40 
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Superb spatial granularity for a 
detector of this scale Events in NO𝜈A 

(simulated events with 2 GeV visible) 

X0 = 38 cm  (6 cell depths, 10 cell widths) 

𝜇 + p 

e + p 

𝜋0 + p 

proton 

1 meter 

1
 m

et
er

 

Michel e- 
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NO𝜈A  hierarchy 

reach vs. 𝛿 
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MiniBooNE early nu 
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MiniBooNE appearance data 
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M. G. Aartsen et al. (IceCube), Science  342, 6161 (2013) 

Ryan Patterson, Caltech 46 Frontiers in Particle Physics, January 22, 2014 



M. G. Aartsen et al. (IceCube), Science  342, 6161 (2013) 
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ANTARES 

IceCube 
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