
M. Biglietti (INFN Roma3) on behalf of ATLAS CDF CMS and D0 collaborations

MEASUREMENTS OF HIGGS BOSON COUPLINGS

Frontiers in Particle Physics: From Dark Matter to the LHC and Beyond 18-24 January 2014 Aspen Center for Physics

After the discovery...

- Is the new boson responsible for the electroweak symmetry breaking?
 - Does it provide masses to the fermions and bosons?
 - Is it the Higgs boson predicted by the SM?
- Transition towards the measurements of the particle's properties
 - Rates and <u>couplings</u>
 - Spin and Parity
- Compatibility with SM couplings
 - Fermion/bosons
 - Custodial symmetry
- Presence of BSM particles
 - can contribute to loop-induced processes
 - can contribute to the Higgs boson width

THE BEH-MECHANISM, INTERACTIONS WITH SHORT RANGE FORCES AND SCALAR PARTICLES

Channels Investigated

Almost full luminosity used in almost all channels

LHC Run I : ~5fb⁻¹ @ 7TeV + ~20fb⁻¹ @ 8TeV Tevatron Run II : ~9.5fb⁻¹ @1.96TeV

	ATLAS			CMS				
	ggF	VBF	VH	ttH	ggF	VBF	VH	ttH
γγ	~	✓	~	✓	~	✓	~	✓
ZZ→4I	~	~	✓		~	~		✓
WW→IvIv	~	✓	✓		~	~	~	~
ττ	~	✓	✓		~	~	✓	~
bb			✓	✓		~	✓	✓

ggF, ttH : Fermion couplings VBF, VH: EW Vector Boson couplings

Productions disentangled from other activities in candidate events 3

Channels Investigated

Almost full luminosity used in almost all channels

 $H \rightarrow \gamma \gamma$

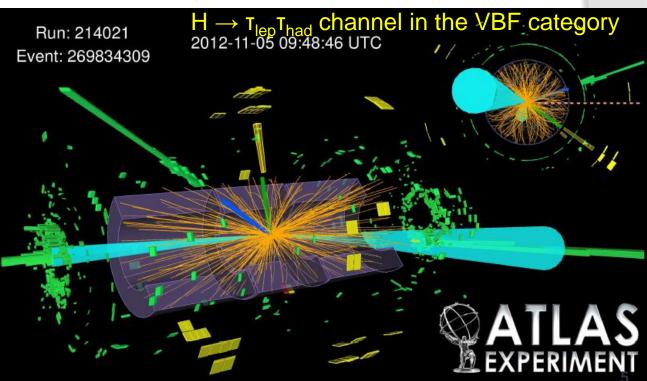
LHC Run I : ~5fb⁻¹ @ 7TeV + ~20fb⁻¹ @ 8TeV

9.6

100 - 150

Tevatron Run II : ~9.5fb⁻¹ @1.96TeV

Channel E E		Luminosity	mu rang
		(fb^{-1})	(GeV/c^2)
$WH \rightarrow \ell \nu b \bar{b}$ 2-jet channels $4 \times (5 \ b\text{-tag categories})$		9.45	90 150
$WH \rightarrow \ell \nu b \bar{b}$ 3-jet channels $3 \times (2 b \text{-tag categories})$		9.45	90-150
$ZH \rightarrow \nu \bar{\nu} b \bar{b}$ (3 <i>b</i> -tag categories)		9.45	90-150
$ZH \rightarrow \ell^+ \ell^- b\bar{b}$ 2-jet channels $2 \times (4 b\text{-tag categories})$	$H \rightarrow b \bar{b}$	9.45	90-150
$ZH \rightarrow \ell^+ \ell^- b\bar{b}$ 3-jet channels $2 \times (4 b$ -tag categories)		9.45	90-150
$WH + ZH \rightarrow jjb\bar{b}$ (2 b-tag categories)		9.45	100-150
$t\bar{t}H \to W^+ bW^- \bar{b}b\bar{b}$ (4 jets,5 jets, ≥ 6 jets)×(5 b-tag categor	ies)	9.45	100-150
$H \rightarrow W^+W^- = 2 \times (0 \text{ jets}) + 2 \times (1 \text{ jet}) + 1 \times (\geq 2 \text{ jets}) + 1 \times (\text{low})$	$-m_{\ell\ell})$	9.7	110-200
$H \rightarrow W^+W^ (e - \tau_{\rm had}) + (\mu - \tau_{\rm had})$		9.7	130-200
$WH \rightarrow WW^+W^-$ (same-sign leptons)+(tri-leptons)	$H ightarrow W^+ W^-$	9.7	110-200
$WH \rightarrow WW^+W^-$ (tri-leptons with 1 τ_{had})		9.7	130 - 200
$ZH \rightarrow ZW^+W^-$ (tri-leptons with 1 jet, ≥ 2 jets)		9.7	110- 20 0
$H \to \tau^+ \tau^-$ (1 jet)+(≥ 2 jets)	$H \rightarrow \tau^+ \tau^-$	6.0	100-150
$H \rightarrow \gamma \gamma = 1 \times (0 \text{ jet}) + 1 \times (\geq 1 \text{ jet}) + 3 \times (\text{all jets})$	$H \rightarrow \gamma \gamma$	10.0	100-150
H ightarrow ZZ (four leptons)	H ightarrow ZZ	9.7	120 - 200
Channel L			m_H range
			(GeV/c^2)
$VH \rightarrow \ell \nu b \bar{b}$ (4 b-tag categories)×(2 jets, 3 jets)		9.7	90-150
$2H \rightarrow \nu \bar{\nu} b \bar{b}$ (2 b-tag categories)	$H \rightarrow b \overline{b}$	9.5	100 - 150
$\ell H \to \ell^+ \ell^- b \bar{b}$ (2 b-tag categories)×(4 lepton categories)		9.7	90-150
$U \to W^+ W^- \to \ell^{\pm} \nu \ell^{\mp} \nu$ (0 jets,1 jet, ≥ 2 jets)		9.7	115 - 200
$I + X \rightarrow W^+W^- \rightarrow \mu^\mp \nu \tau^\pm_{\rm had} \nu$		7.3	115-200
$H \to W^+ W^- \to \ell \bar{\nu} j j$ (2 b-tag categories)×(2 jets, 3 jets)	$H \rightarrow W^+W^-$	9.7	100-200
$H \rightarrow e^{\pm}\mu^{\pm} + X$	$H \rightarrow W'W$	9.7	100-200
$H \rightarrow \ell \ell \ell + X$		9.7	100-200
$H \to \ell \bar{\nu} j j j j j$ ($\geq 4 \text{ jets}$)		9.7	100-200
$TH \rightarrow \tau_{had} \tau_{had} \mu + X$	II. + -	8.6	100-150
$I + X \rightarrow \ell^{\pm} \tau_{\rm had}^{\mp} j j$	$H \rightarrow \tau^+ \tau^-$	9.7	105-150


4

Observation of H \rightarrow \tau \tau

- ATLAS and CMS announce the results of their searches in the $\tau\tau$ channel
- Unambiguous observation of coupling of the Higgs particle to fermions

Observed
 (expected) signal
 significance:

ATLAS :
4.1σ (3.2σ)
CMS :
3.4σ (3.6σ)

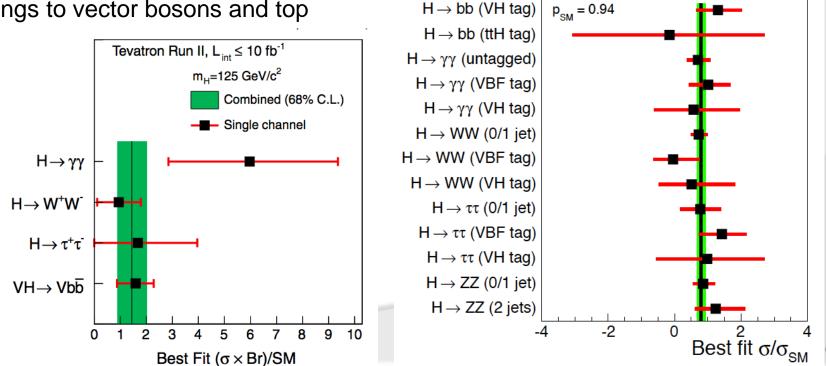
ATLAS-CONF-2013-108

CMS-HIG-13-004

Probe Production Rate

Phys. Lett. B 726 (2013) 88 <u>CMS-HIG-13-005</u> PRD 88, 052014 (2013)

 $\sqrt{s} = 7 \text{ TeV}, L \le 5.1 \text{ fb}^{-1} \sqrt{s} = 8 \text{ TeV}, L \le 19.6 \text{ fb}^{-1}$


CMS Preliminary $m_{\rm H} = 125.7 \, \text{GeV}$

- $\mu = \sigma/\sigma_{SM}$ determined with a profile likelihood ratio fit with a fixed mass hypothesis
- ATLAS : $\mu = 1.23 \pm 0.18$, CMS : $\mu = 0.80 \pm 0.14$
 - not including latest results in fermionic decay channels
- Tevatron : **µ = 1.44**^{+0.59}_{-0.56}
- additional tags to select preferentially events from a particular production mode.
 - overlaps exist, purity depends on the channel itself (20-50% $gg \rightarrow H$ contamination in VBF)

Combined

 $\mu = 0.80 \pm 0.14$

 used to test the relative strengths of the couplings to vector bosons and top

Coupling Measurements

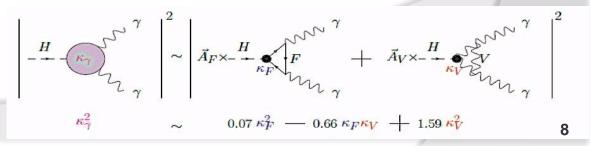
- Several production and decay mechanisms contribute to signal rate \rightarrow interpretation is difficult
- A better option: measure deviations of couplings from the SM prediction (LHCXSWG YR3: arxiv:11307.1347)
 - series of benchmark parametrizations
- Basic assumptions:
 - there is only one underlying state at m_H=125.5 GeV
 - width of the Higgs boson is neglected (narrow-width approximation) for decoupling production and decay
 - same tensor structure of the SM Higgs boson : J^{CP} = 0⁺⁺ (tested independently by ATLAS/CMS/Tevatron)
 - only allow for modification of coupling strengths
- Under these assumptions all production cross sections and branching ratios can be expressed in terms of a few common multiplicative factors to the SM Higgs couplings

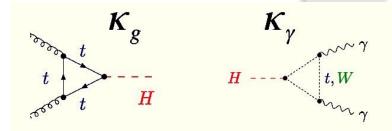
$$\Gamma_{H} = \kappa_{H}^{2} \cdot \Gamma_{H}^{SM} ; \quad \Gamma_{f} = \kappa_{f}^{2} \cdot \Gamma_{f}^{SM} ; \quad \sigma_{i} = \kappa_{i}^{2} \cdot \sigma_{i}^{SM}$$
$$\sigma \cdot BR (gg \to H \to \gamma\gamma) = \sigma_{SM}(gg \to H) \cdot BR_{SM}(H \to \gamma\gamma) \cdot \frac{\kappa_{g}^{2} \cdot \kappa_{\gamma}^{2}}{\kappa_{H}^{2}}$$

 $(\sigma \cdot BR)(ii \to H \to ff) = \frac{\sigma_{ii} \cdot \Gamma_{ff}}{\Gamma_{H}}$

• Example:

Coupling Modifiers


• universality of k's for fermions and gauge bosons $k_F = k_b = k_t = k_{\tau}$, $k_V = k_W = k_Z$ can be assumed

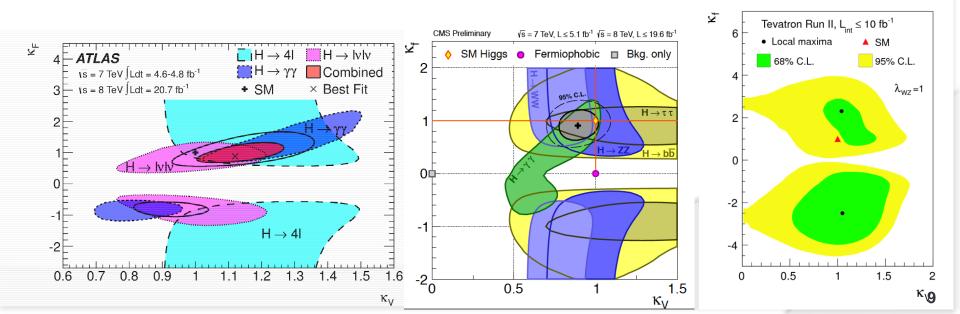

•scale factors of loop induced couplings $(\mathbf{k}_{q}, \mathbf{k}_{v})$ and the total width \mathbf{k}_{H} can be treated effectively (allowing for possible additional particles)

- ... or can be expressed in terms of fundamental factors \mathbf{k}_{W} , \mathbf{k}_{Z} , \mathbf{k}_{t} ... (assuming the SM contents) • total width $\Rightarrow \kappa_{H}^{2} \approx 0.75 \kappa_{F}^{2} + 0.25 \kappa_{V}^{2}$

• photon vertex loop $H \rightarrow \gamma \gamma$ mediated by W and fermions (mainly top) \rightarrow sensitivity to relative sign between k_v and k_F from the interference $k_v k_F$ term

- \rightarrow k_v assumed positive
- \rightarrow two minima

$$\kappa_{H}(\kappa_{W},\kappa_{Z},\kappa_{b},...) \ \kappa_{g}(\kappa_{t},\kappa_{b}) \ \kappa_{\gamma}(\kappa_{t},\kappa_{W},...)$$

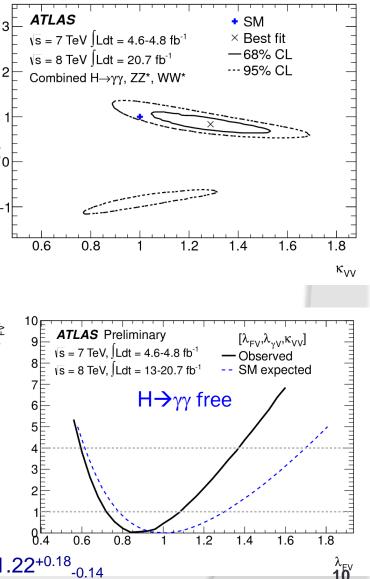

Fermion versus Vector Boson couplings

Phys. Lett. B 726 (2013) 88 CMS-HIG-13-005 PRD 88, 052014 (2013)

 Assume no BSM contributions to the total decay width and photon/gluon vertex loops

 Interpret gluon and photon loops in terms of tree-level couplings to top, bottom, W ...

Best fit prefers positive couplings, good compatibility with SM seen


Fermion/Vector Boson couplings with looser assumptions

- no assumptions on the total width Γ_{H}
- gives strong constraints on the fermion coupling k_F since dominated in the SM by the sum of fermion terms
- •ratios of coupling scale factors measured, free parameters: $K_{VV}=K_VK_V/K_H$, $\lambda_{FV}=K_F/K_V$
- •68% CL intervals : , λ_{FV}=[0.70,1.01] κ_{vv}= [1.13,1.45]
- $\lambda_{FV} = 0$ (no fermion couplings) strongly disfavored

ono assumptions on $Γ_H$ and on H→γγ content

- •H $\rightarrow\gamma\gamma$ loop can be a sensitive probe of BSM physics and account for possible different interference between vector bosons and fermions
- •free parameters κ_{VV} , λ_{FV} , $\lambda_{\gamma V} = \kappa_{\gamma}/\kappa_{V}$
- no sensitivity to the relative sign between fermion and vector boson couplings

•68% CL results : , $\lambda_{FV}=0.85^{+0.23}_{-0.13}$ $\kappa_{VV}=1.15\pm0.21$, $\lambda_{VV}=1.22^{+0.18}_{-0.14}$

CMS-HIG-13-005 PRD 88, 052014 (2013)

Probing the W to Z ratio (custodial symmetry) - I

⊔ ⊘

4.5

4.0

3.5

3.0

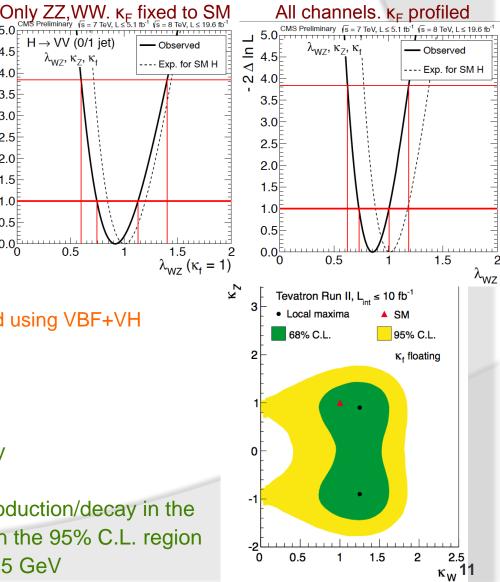
2.5

2.0[±]

1.5

1.0

0.5E

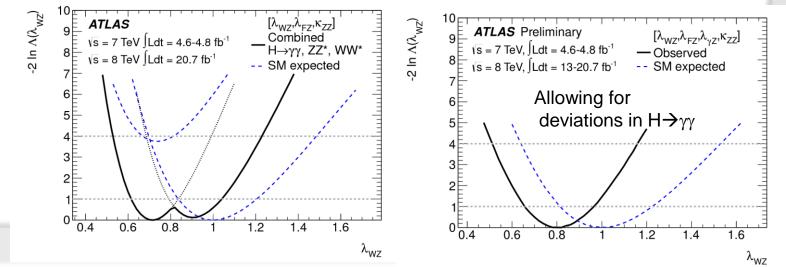

0.0^년

- SM requires $\kappa_W = \kappa_Z$ \bigcirc
- Free parameters: \bigcirc

$\lambda_{WZ} = \kappa_W / \kappa_Z, \kappa_Z, \kappa_F$

- CMS $oldsymbol{0}$
 - only $H \rightarrow ZZ$, WW in 0/1 jet categories • ratio $\lambda_{WZ} = \kappa_W / \kappa_Z \mod \text{independent}$,
 - production dominated by $gg \rightarrow H$
 - \circ account small VBF contribution $\rightarrow \kappa_7$ treated as nuisance parameter, $\kappa_{\rm F}=1$
 - $\delta_{WZ} = [0.60, 1.40] @95\% CL$
 - all channels
 - Assuming SM content in the $\gamma\gamma$ loop and using VBF+VH production, $\mathbf{K}_{\mathbf{F}}$ profiled
 - **λ**_{wz} = [0.62,1.19] @95% CL
- Tevatron
 - allow both K_W and K_7 to vary independently
 - $\lambda_{WZ} = 1.24^{+2.34}_{-0.42} @68\%$ CL

• $(\kappa_W, \kappa_7) = (0, 0)$ corresponds to no Higgs production/decay in the most sensitive search modes not included in the 95% C.L. region due to the significant excess of events @125 GeV

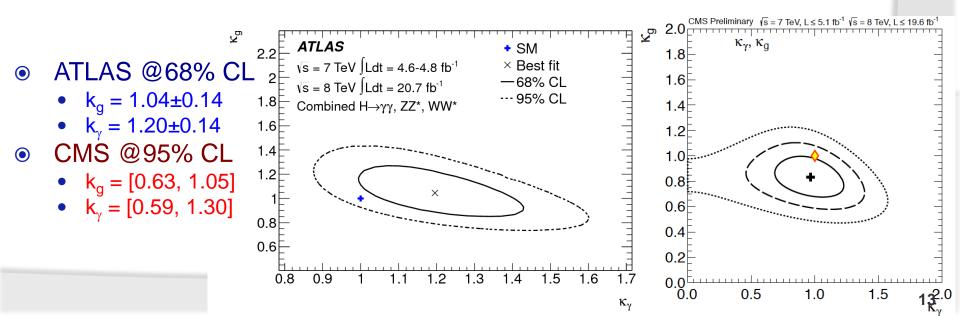

12

Phys. Lett. B 726 (2013) 88

ATLAS-CONF-2013-034

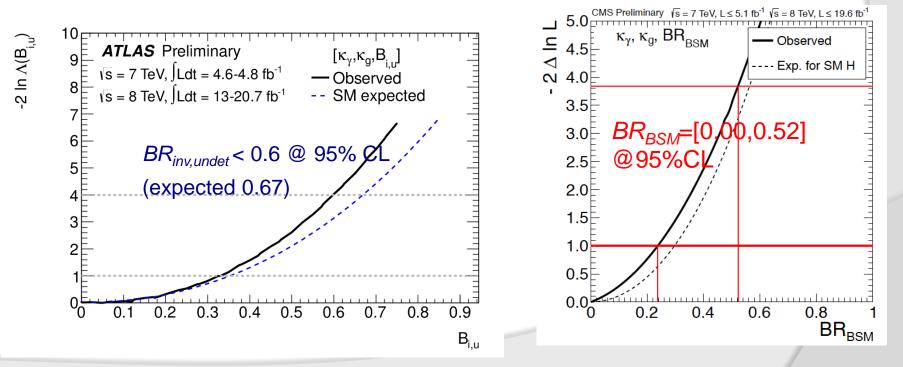
Probing the W to Z ratio (custodial symmetry) - II

- Three or four free parameters
 - $\lambda_{\gamma Z}$ absorbs BSM effects in H $\rightarrow \gamma \gamma$ loop
 - no assumptions on the total width Γ_H
- ATLAS
 ATTLAS
 ATLAS
 ATTLAS
 ATTL
 - 68% CL results
 - non-SM local minimum
 preferred for λ_{FZ} but the other local
 minimum is compatible with SM
 at ~1.5\sigma level



$\begin{array}{rcl} \kappa_{ZZ} &=& \kappa_Z \cdot \kappa_Z / \kappa_H \\ \lambda_{WZ} &=& \kappa_W / \kappa_Z \\ \lambda_{\gamma Z} &=& \kappa_\gamma / \kappa_Z \\ \lambda_{FZ} &=& \kappa_F / \kappa_Z \end{array}$	
$\lambda_{WZ} \in [0.64, 0.87]$ $\lambda_{FZ} \in [-0.89, -0.55]$ $\kappa_{ZZ} \in [1.20, 2.08]$	$\begin{array}{rcl} \lambda_{WZ} &=& 0.80 \pm 0.15 \\ \lambda_{\gamma Z} &=& 1.10 \pm 0.18 \\ \lambda_{FZ} &=& 0.74^{+0.21}_{-0.17} \\ \kappa_{ZZ} &=& 1.5^{+0.5}_{-0.4} \end{array}$

Phys. Lett. B 726 (2013) 88 CMS-HIG-13-005


Test for BSM Physics in Loops

- SM processes at 1-loop particularly sensitive to anomalous new physics effects
- Two options to probe BSM contributions:
 - 1. release assumption of only-SM content in Higgs production loop
 - fit effective coupling κ_v , κ_g but fix other tree level parameters to SM (k_i=1)
 - assume no BSM contributions to the total decay width
 - 2. release assumption of only-SM contributions to Higgs width Γ_{H} (next slide)
- Effective couplings to gluons and photons in good agreement with SM

Test for BSM Physics in Decays

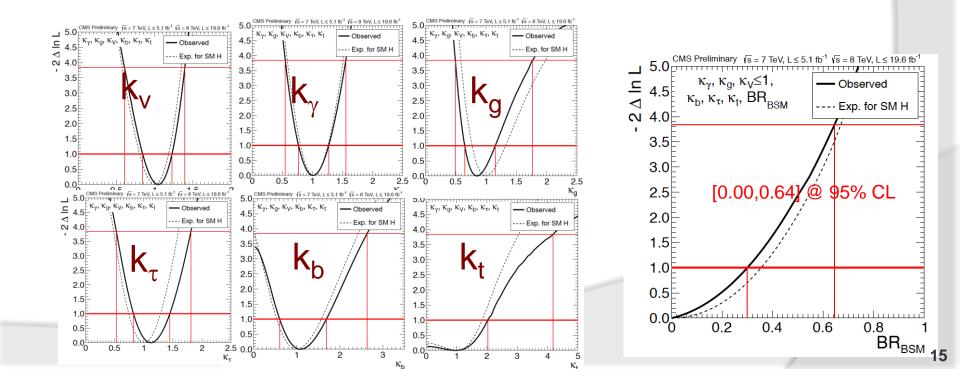
- direct invisible decays or decays into final states that cannot be distinguished from background
- the total width $\Gamma_{\rm H}$ is parameterized with additional $BR_{inv,undet}$
- free parameters κ_{γ} , κ_{g} , $BR_{inv,undet} = BR_{BSM}$
- BSM Γ_{H} contribution constrained

More information on Higgs \rightarrow invisible in Justin Griffiths' talk

ATLAS-CONF-2013-034 CMS-HIG-13-005

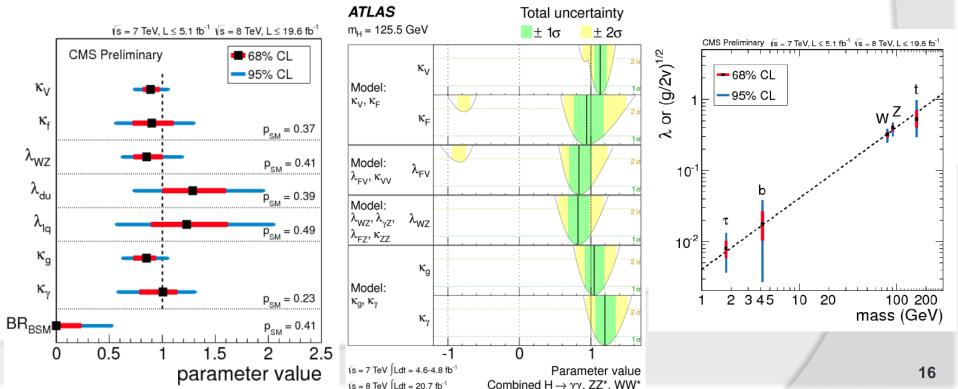
 $\Gamma_{H} = \Gamma_{H}^{SM} + \Gamma_{H}^{BSM}$

 $\mathcal{BR}_{inv.undet.} = \Gamma_H^{\mathsf{BSM}} / \Gamma_H$


A more general parametrization

• custodial symmetry: $\kappa_W = \kappa_Z = \kappa_V$

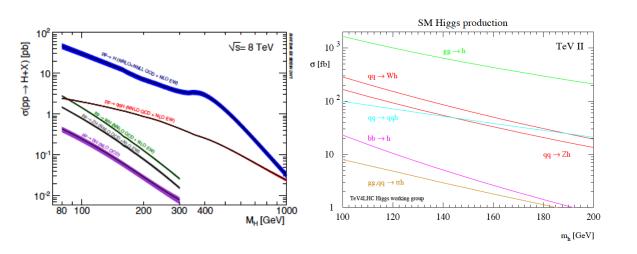
●the couplings to third generation fermions are scaled independently by k_t, k_b, k_τ
 ●effective couplings to gluons and photons, induced by loops, given by k_g and k_γ
 ●the partial width can be Γ_{BSM} zero or free →6 or 7 fitted parameters

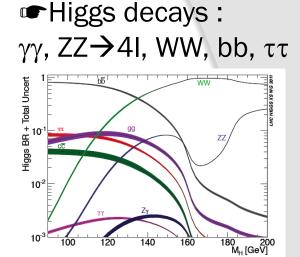

CMS-HIG-13-005

no statistically significant anomalies with respect to the SM hypothesis

Summary of Coupling Measurements

- different sectors of the new boson couplings tested, all measurements are consistent with the SM Higgs hypothesis, including
 - couplings vs mass
 - fermion universality
 - ratios of the couplings of down/up fermions (λ_{du} = k_d/k_u) and of leptons/quarks (λ_{la} = k_l/k_a)




Conclusions

- Outstanding LHC and Tevatron performance allowed to test the fundamental properties of the discovered Higgs boson
- The compatibility of the measured yields for the studied channels with the SM prediction is tested under various benchmark assumptions probing salient features of the couplings
- No significant deviation from the SM prediction is observed in any of the fits performed
- LHC Run-I accuracy achieved is ~20-30%
- LHC Run-II and HL-LHC will bring more statistics to improve the current measurement but also open new channels
 - Top Yukawa direct measurement with ttH
 - Couplings to 2nd generation fermions (µ)
 - Higgs self-couplings (HHH)
- ● More information on "Future prospects for Higgs measurements" in Hubert Kroha' talk

BACKUP

Production/Decay Processes (backup)

Productions disentangled from other activities in candidate events

VH W.Z ttH Leptons, missing ET or 0000000000 HO Two top quarks: leptons, low-mass dijets from ā missing ET, multijets or W, Z bremsstrahlung W or Z decays 0000000000 b-tagged jets t t fusion VBF Two high p_{T} jets with - HO 0000000000 HO ggF high-mass and large the rest pseudorapidity separation 00000000 WW, ZZ fusion g g fusion EW Vector Boson couplings Fermion couplings

Statistical Procedure

Construct likelihood from Poisson probabilities with parameter of interest (signal strength μ in this case):

 $L(\text{data} | \boldsymbol{\mu}, \theta) = \text{Poisson}(\text{data} | \boldsymbol{\mu} \cdot s(\theta) + b(\theta)) \times p(\tilde{\theta} | \theta)$

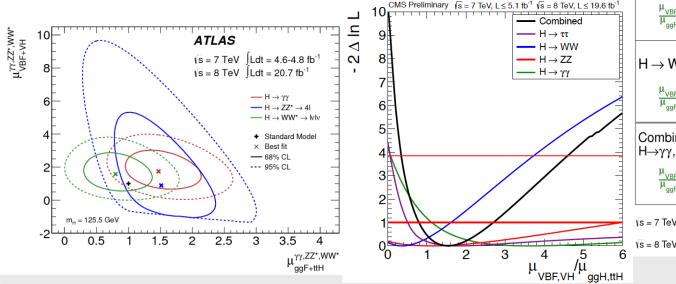
 μ : signal strength; θ : 'nuisance' parameters (efficiencies...)

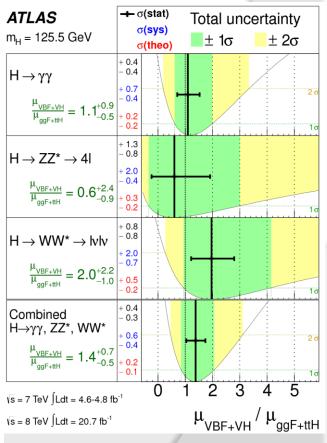
Hypothesized value of μ is tested with a test statistic:

$$q_{\mu} = -2\ln\Lambda(\mu) = -2\ln\left[\frac{L\left(\mu,\hat{\hat{\theta}}(\mu)\right)}{L\left(\hat{\mu},\hat{\theta}\right)}\right]$$

Systematic uncertainties are included as nuisance parameters constrained by chosen pdfs (Gaussian, log-normal, ...)

Combination amounts to taking product of likelihoods from different $L(\text{data} | \mu, \theta) = \prod_i L_i(\text{data}_i | \mu, \theta_i)$ channels:


Phys. Lett. B 726 (2013) 88 **Production Signal Strengths**


 data are fitted separating vector bosons mediated (VBF,VH) from gluon mediated processes (ggF, ttH, mainly involving top loops) \rightarrow Yukawa vs gauge coupling

• two signal strengths (μ_{VBF+VH} , $\mu_{qqF+ttH}$) for each decay channel

•95% CL contours consistent with SM expectations

• contours for the combination of the decay channels are not meaningful (new physics in the BRs) • combination is done in a model independent way measuring the ratios for the each production channel and their combination

CMS-HIG-13-005

Benchmark Models

• Several models can be tested:

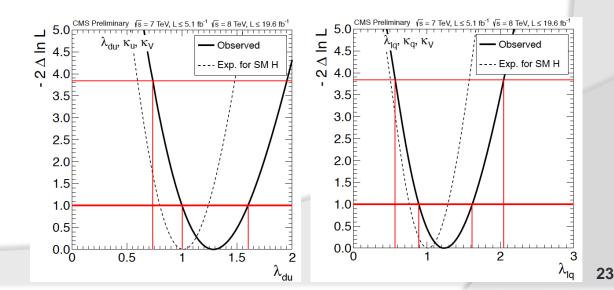
couplings to fermions and bosons
 custodial symmetry:

•in the SM: $\lambda_{WZ} = \kappa_W / \kappa_Z = 1$, extract λ_{WZ} from measured inclusive rates of H \rightarrow WW and H \rightarrow ZZ (including VBF and VH production)

oproduction and decay loops (testing BSM heavy particles):

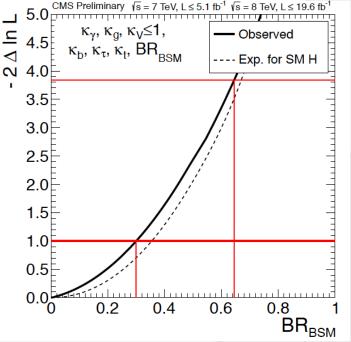
couplings of the known particles to the Higgs have SM strength (k_j=1)

new particles can contribute to loop-induced

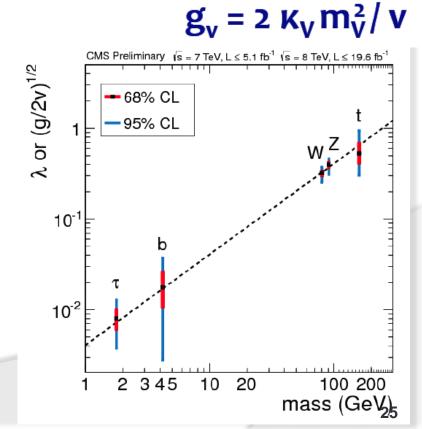

processes (scale factors k_q and k_y)

•new particles do not contribute to the Higgs width

Model	Probed	Parameters of	Fun	unctional assumptions				
	couplings	interest	κ _V	К _F	Кg	Kγ	К _Н	
1	Couplings to	κ_V, κ_F	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
2	fermions and bosons	$\lambda_{FV}, \kappa_{VV}$	\checkmark	\checkmark	\checkmark	\checkmark	-	
3	Custodial symmetry	$\lambda_{WZ}, \lambda_{FZ}, \kappa_{ZZ}$	-	\checkmark	\checkmark	\checkmark	-	
4	Custodiar symmetry	$\lambda_{WZ}, \lambda_{FZ}, \lambda_{\gamma Z}, \kappa_{ZZ}$	-	\checkmark	\checkmark	-	-	
5	Vertex loops	<i>K</i> g, <i>K</i> γ	=1	=1	-	-	\checkmark	


Test for asymmetries in the couplings to fermions

- In 2HDM models the couplings of the neutral Higgs bosons to fermions can be modified wrt the Yukawa couplings of the SM Higgs boson.
 - in MSSM the couplings of neutral Higgs bosons to up-type and down-type fermions are modified
 - the modification are the same for all three generations and for quarks and leptons
 - more in general leptons can decouple from the Higgs boson that behaves in a SM-like way wrt W/Z and quarks
- allow for different ratios of the couplings of down/up fermions $(\lambda_{du} = k_d/k_u)$ or of leptons/quarks $(\lambda_{lq} = k_l/k_q)$
 - up-type fermions=top (from ggF production), down-type fermions =bottom quark, tau lepton (from decays)
- Free parameters:
 - λ_{du} , k_u , k_V
 - λ_{Iq} , k_q , k_V
 - assume $\Gamma_{BSM} = 0$
- 95% CL intervals
 - $\lambda_{du} = [0.74, 1.95]$
 - $\lambda_{lq} = [0.57, 2.05]$
 - Both are constrained to be positive


Constraints on BR_{BSM} in a scenario with free CMS-HIG-13-005 couplings

- An alternative more general scenario can be obtained
 - allowing for a non-vanishing Γ_{BSM}
 - 7 fitted parameters: \mathbf{k}_{V} , \mathbf{k}_{t} , \mathbf{k}_{b} , \mathbf{k}_{t} , \mathbf{k}_{γ} , \mathbf{k}_{g} and \mathbf{BR}_{BSM}
 - constraining k_V<1
 - requirement motivated by many EWSB models
- BRBSM derived while profiling all the other parameters
 - in the interval [0.00,0.64] @ 95% CL.

Couplings vs mass

- the Higgs boson couplings are proportional to the masses of the particles
- Perform fit to full CMS combination, resolving gluon and photon loops in terms of tree-level couplings
- Top coupling from ggF
- Redefine couplings with scale factors

 $\lambda_{f} = \kappa_{f} m_{f} / v$

 $\lambda_f = m_f / v$