Measuring CPViolation in $\mathrm{h} \rightarrow \mathrm{T}^{+} \mathrm{T}^{-}$at Colliders
 Reinard Primulando
 with R. Harnik, A. Martin, T. Okui and F.Yu Phys. Rev. D88 (20|3) 076009 [arxiv: I 308.1094 [hep-ph]]

Motivation

- Shakarov conditions for baryogenesis suggest some additional sources of CP violation.
- One of the unexplored territory for CP violation to happen is at the sector of the newly found Higgs.

CP Property of $h \rightarrow Z Z$

ATLAS-CONF-2013-013

CMS collaboration, I 3 | 2.5353

- CMS constraints $\left|a_{3} / a_{1}\right|<2.6$ at 95% CL.

$$
A(\mathrm{H} \rightarrow \mathrm{ZZ})=v^{-1}\left(a_{1} m_{Z}^{2} \epsilon_{1}^{*} \epsilon_{2}^{*}+a_{2} f_{\mu \nu}^{*(1)} f^{*(2), \mu v}+a_{3} f_{\mu v}^{*(1)} \tilde{f}^{*(2), \mu v}\right)
$$

Higgs decay to fermions

- Both ATLAS and CMS start to see some evidence of Higgs decay to a pair of taus.

CP Property of $h \rightarrow \mathrm{~T}^{+} \mathrm{T}^{-}$

- Measuring the CP phase of $h \rightarrow \mathrm{~T}^{+} \mathrm{T}^{-}$ requires knowledge of the tau spins.
- Unlike in the quark cases, the tau polarization is not going to be washed out by hadronization.
- The tau decay is complex enough so its spin can be inferred from the decay kinematics.

EFT Perspective

$$
\mathcal{L}_{\text {eff }} \supset-\left(\alpha+\beta \frac{H^{\dagger} H}{\Lambda^{2}}\right) H \ell_{3 \mathrm{LL}}^{\dagger} \tau_{\mathrm{R}}+\text { c.c. },
$$

- In general the coefficients can be complex.
- After inserting the Higgs vev, one can identify

$$
\alpha+\beta \frac{v^{2}}{\Lambda^{2}}=y_{\tau}^{S M}>0,
$$

- And the Higgs coupling to tau

$$
\begin{aligned}
y_{\tau}(\cos \Delta+\mathrm{i} \sin \Delta) & =\alpha+3 \beta \frac{v^{2}}{\Lambda^{2}} \\
& =y_{\tau}^{\mathrm{SM}}+2 \beta \frac{v^{2}}{\Lambda^{2}}
\end{aligned}
$$

CPViolation in $h \rightarrow \mathrm{~T}^{+} \mathrm{T}^{-}$

$$
\mathcal{L}_{\text {pheno }} \supset-m_{\tau} \bar{\tau} \tau-\frac{y_{\tau}}{\sqrt{2}} h \bar{\tau}\left(\cos \Delta+\mathrm{i} \gamma_{5} \sin \Delta\right) \tau
$$

- There are some indirect bounds on the phase and overall coupling.

$$
\begin{aligned}
\kappa_{f} & =\frac{y_{f}}{y_{f}^{S M}} \cos \Delta \\
\tilde{\kappa}_{f} & =\frac{y_{f}}{y_{f}^{S M}} \sin \Delta
\end{aligned}
$$

Brod, Haisch, Zupan: I3IO.I385

CPViolation in $h \rightarrow \mathrm{~T}^{+} \mathrm{T}^{-}$

$$
\mathcal{L}_{\text {pheno }} \supset-m_{\tau} \bar{\tau} \tau-\frac{y_{\tau}}{\sqrt{2}} h \bar{\tau}\left(\cos \Delta+\mathrm{i} \gamma_{5} \sin \Delta\right) \tau
$$

- The tau spin correlation is sensitive to the CP phase, Δ.
- The tau spin information is encoded in the momentum distribution of its decay products.
- We consider the decay of $\tau \rightarrow \rho \nu$ with subsequent decay of $\rho^{ \pm} \rightarrow \pi^{ \pm} \pi^{0}$ (26% of BF)

The Amplitude

Amplitude

$$
\begin{array}{rlrl}
M \propto \bar{u}_{\nu_{\tau}} \gamma^{\mu} P_{L}\left(x^{-}+m_{\tau}\right)\left(\cos \Delta+i \gamma_{5} \sin \Delta\right)\left(-x^{+}+m_{\tau}\right) & \gamma^{\nu} P_{L} U_{\bar{v}_{\tau}} \\
\times \eta_{\mu \alpha} & \times \eta_{\nu \beta} \\
& \times\left(\pi^{-}-\pi^{0-}\right)^{\alpha} & \times\left(\pi^{+}-\pi^{0+}\right)^{\beta}
\end{array}
$$

- Neglect diagram with the neutral pion exchanged.
- Assume all intermediate particles are onshell.
- Neglect the charged and neutral pion mass difference

The Amplitude

Define

$$
q_{ \pm} \equiv p_{\pi^{ \pm}}-p_{\pi^{0 \pm}}
$$

we can simplify the amplitude to be

$$
\mathcal{M}_{\text {full }} \propto \bar{u}_{\nu^{-}} \not q_{-}\left(\mathrm{e}^{\left.\mathrm{i} \Delta \dot{\phi}_{\tau^{-}}-\mathrm{e}^{-\mathrm{i} \Delta} \dot{p}_{\tau^{+}}\right) \dot{q}_{+} P_{\mathrm{L}} v_{\nu^{+}}}\right.
$$

The Amplitude

Squaring the amplitude

$$
|\mathcal{M}|^{2} \propto P_{\Delta, \mathrm{S}}+P_{\Delta, \phi}+P_{\Delta, \mathrm{S}}+P_{\Delta, \mathrm{S}}^{*}
$$

The most interesting term is

$$
\begin{aligned}
P_{\Delta, \mathrm{S}} \equiv-\mathrm{e}^{2 \mathrm{i} \Delta} & {\left[\left(k_{-} \cdot p_{\tau^{+}}\right)\left(k_{+} \cdot p_{\tau^{-}}\right)-\left(p_{\tau^{-}} \cdot p_{\tau^{+}}\right)\left(k_{-} \cdot k_{+}\right)\right.} \\
& \left.-\mathrm{i} \epsilon_{\mu \nu \rho \sigma} k_{-}^{\mu} p_{\tau^{-}}^{\nu} k_{+}^{\rho} p_{\tau^{+}}^{\sigma}\right] .
\end{aligned}
$$

where

$$
\begin{aligned}
k_{ \pm}^{\mu} \equiv y_{ \pm} q_{ \pm}^{\mu}+r p_{\nu^{ \pm}}^{\mu} & y_{ \pm}
\end{aligned} \begin{aligned}
& 2 q_{ \pm} \cdot p_{\tau^{ \pm}} \\
& m_{\tau}^{2}+m_{\rho}^{2}=\frac{q_{ \pm} \cdot p_{\tau^{ \pm}}}{p_{\rho^{ \pm}} \cdot p_{\tau^{ \pm}}} \\
& r \equiv \frac{m_{\rho}^{2}-4 m_{\pi}^{2}}{m_{\tau}^{2}+m_{\rho}^{2}} \approx 0.14
\end{aligned}
$$

The Amplitude

At the Higgs rest frame

$$
P_{\Delta, \mathrm{S}}=-2 \mathrm{e}^{\mathrm{i}(2 \Delta-\Theta)}\left|\vec{E}_{+}\right|\left|\vec{E}_{-}\right|
$$

where

$$
\begin{gathered}
\vec{E}_{ \pm}=p_{\tau^{ \pm}}^{0} \vec{k}_{ \pm}-k_{ \pm}^{0} \vec{p}_{\tau^{ \pm}} \\
\Theta=\operatorname{sgn}\left[\vec{v}_{\tau+} \cdot\left(\vec{E}_{-} \times \vec{E}_{+}\right)\right] \operatorname{Arccos}\left[\frac{\vec{E}_{+} \cdot \vec{E}_{-}}{\left|\vec{E}_{+}\right|\left|\vec{E}_{-}\right|}\right]
\end{gathered}
$$

$\mathrm{E}_{+} \mathrm{E}$ - plane is perpendicular to the tau velocity

OVariable

$$
|\mathcal{M}|^{2} \propto P_{\Delta, s}+P_{\Delta, \phi}-4\left|\vec{E}_{+}\right|\left|\vec{E}_{-}\right| \cos (2 \Delta-\Theta)
$$

- The CP phase Δ can be determined by observing the minimum of the Θ distribution.
- The Θ distribution for $\mathbf{Z} \rightarrow \mathrm{T}^{+} \mathrm{T}^{-}$
 is flat.

Comparison with previous works

Worek, hep-ph/0305082

- The acoplanarity angle $\left(\varphi^{*}\right)$ between the decay plane of ρ^{+}and ρ^{-}in the $\rho^{+} \rho^{-}$rest frame can also be used to distinguish various $C P$ phase; Bower, et.al. (hep-ph/0204292).
- Other studies e.g. Berge,et.al. (I308.2674) are based on reconstructing the impact parameter vectors of the visible T decay products.

ILC

- Our Θ variable requires construction of the Higgs rest frame, hence knowledge of neutrino momenta is required.
- The neutrino momenta can be reconstructed at the ILC with a twofold ambiguity

ILC

- We consider ILC 250 GeV with luminosity $\mathrm{I} \mathrm{ab}^{-1}$.
- We assume the SM production cross section of $h Z$ and SM branching ratio of $\mathrm{h} \rightarrow \mathrm{T}^{+} \mathrm{T}^{-}$.
- Detector effect was not included in this estimate.
- The accuracy is obtained by comparing the $\Delta=0$ hypothesis with an alternative $\Delta=\delta$ hypothesis.

$\sigma_{e^{+} e^{-} \rightarrow h Z}$	0.30 pb
$\operatorname{Br}\left(h \rightarrow \tau^{+} \tau^{-}\right)$	6.1%
$\operatorname{Br}\left(\tau^{-} \rightarrow \pi^{-} \pi^{0} \nu\right)$	26%
$\operatorname{Br}(Z \rightarrow$ visibles $)$	80%
$\mathrm{~N}_{\text {events }}$	990
Accuracy	4.4°

LHC

- At the LHC, the neutrino momentum can not be reconstructed.
- We employ collinear approximation for neutrino momenta.
- We consider pp $\rightarrow \mathrm{h}$ j process at 14 TeV LHC with the Higgs is produced by gluon fusion process.

LHC

- The main backgrounds are Z+jets and QCD.
- We employ cuts:

```
leading jet }\mp@subsup{p}{\textrm{T}}{}>140\textrm{GeV}\mathrm{ with }|\eta|<2.
#}\mp@subsup{\textrm{T}}{\textrm{T}}{}>40\textrm{GeV
p
|\mp@subsup{\eta}{}{\mp@subsup{\rho}{}{\pm}}}|<2.1
mcoll }>120\textrm{GeV}\mathrm{ ,
```

- We assume that the QCD background is 10% of $Z+j e t s$.
- Again, pileups and detector effects are not considered.
- We assume 50% and 70% tau tagging efficiencies.

LHC

	$h j$	$Z j$
Inclusive σ	2.0 pb	420 pb
$\operatorname{Br}\left(\tau^{+} \tau^{-}\right.$decay $)$	6.1%	3.4%
$\operatorname{Br}\left(\tau^{-} \rightarrow \pi^{-} \pi^{0} \nu\right)$	26%	26%
Cut efficiency	18%	0.24%
$\mathrm{~N}_{\text {events }}$	1100	1800

τ_{h} efficiency	50%	70%
3σ	$L=550 \mathrm{fb}^{-1}$	$L=300 \mathrm{fb}^{-1}$
5σ	$L=1500 \mathrm{fb}^{-1}$	$L=700 \mathrm{fb}^{-1}$
Accuracy $\left(L=3 \mathrm{ab}^{-1}\right)$	11.5°	8.0°

Pseudoscalar and scalar hypotheses can be distinguished at 3 sigma with $550 \mathrm{fb}^{-1}$ assuming 50% tau tagging efficiency.

Possible Improvements

- Better reconstruction of tau and Higgs frames.
- Consider other production and decay modes.

Indirect vs direct searches

May indirectly probe the Higgs coupling to the first generation fermions, if the signal is discovered.

Summary

- We constructed a new variable, Θ, that can be used to distinguish various $C P$ mixing of $h \rightarrow \mathrm{~T}^{+} \mathrm{T}^{-}$at colliders.

$\sigma_{e^{+} e^{-} \rightarrow h Z}$	0.30 pb
$\operatorname{Br}\left(h \rightarrow \tau^{+} \tau^{-}\right)$	6.1%
$\operatorname{Br}\left(\tau^{-} \rightarrow \pi^{-} \pi^{0} \nu\right)$	26%
$\operatorname{Br}(Z \rightarrow$ visibles $)$	80%
$\mathrm{~N}_{\text {events }}$	990
Accuracy	4.4°

ILC

τ_{h} efficiency	50%	70%
3σ	$L=550 \mathrm{fb}^{-1}$	$L=300 \mathrm{fb}^{-1}$
5σ	$L=1500 \mathrm{fb}^{-1}$	$L=700 \mathrm{fb}^{-1}$
Accuracy $\left(L=3 \mathrm{ab}^{-1}\right)$	11.5°	8.0°

LHC

Backup

An UV Completion

$$
\begin{align*}
\mathcal{L}_{\text {tree }}= & \mathcal{L}_{\mathrm{SM}-y_{\tau}} \\
& +|\mathrm{D} \Phi|^{2}-m_{\Phi}^{2}|\Phi|^{2}-\lambda_{\Phi}|\Phi|^{4} \tag{A1}\\
& -\left(y H \ell_{\mathrm{SL}^{2}}^{\dagger} \tau_{\mathrm{R}}+y^{\prime} \Phi \ell_{\mathrm{JL}_{\mathrm{L}}} \tau_{\mathrm{R}}+\lambda^{\prime}\left(\Phi^{\dagger} H\right)|H|^{2}+\text { c.c. }\right), \\
\mathcal{L}_{\text {dim- } 6} & =\frac{\left|\lambda^{\prime}\right|^{2}}{m_{\Phi}^{2}}|H|^{6}+\left(\frac{\lambda^{\prime} y^{\prime}}{m_{\Phi}^{2}}|H|^{2} H \ell_{3_{\mathrm{L}}}^{\dagger} \tau_{\mathrm{R}}+\text { c.c. }\right) .
\end{align*}
$$

CMS tau measurement

CMS, JINST 7 POIOOI

