Measuring CPViolation in h $\rightarrow \tau^+ \tau^-$ at Colliders

Reinard Primulando

with R. Harnik, A. Martin, T. Okui and F.Yu Phys. Rev. D88 (2013) 076009 [arxiv: 1308.1094 [hep-ph]]

Motivation

- Shakarov conditions for baryogenesis suggest some additional sources of CP violation.
- One of the unexplored territory for CP violation to happen is at the sector of the newly found Higgs.

Higgs decay to fermions

 Both ATLAS and CMS start to see some evidence of Higgs decay to a pair of taus.

CP Property of $h \rightarrow \tau^+ \tau^-$

- Measuring the CP phase of $h \rightarrow \tau^+ \tau^$ requires knowledge of the tau spins.
- Unlike in the quark cases, the tau polarization is not going to be washed out by hadronization.
- The tau decay is complex enough so its spin can be inferred from the decay kinematics.

EFT Perspective

$$\mathcal{L}_{\text{eff}} \supset -\left(\alpha + \beta \frac{H^{\dagger} H}{\Lambda^2}\right) H \ell_{3\text{L}}^{\dagger} \tau_{\text{R}} + \text{c.c.} ,$$

- In general the coefficients can be complex.
- After inserting the Higgs vev, one can identify

$$\alpha + \beta \frac{v^2}{\Lambda^2} = y_{\tau}^{\rm SM} > 0 \, ,$$

And the Higgs coupling to tau

$$y_{\tau}(\cos \Delta + i \sin \Delta) = \alpha + 3\beta \frac{v^2}{\Lambda^2}$$
$$= y_{\tau}^{SM} + 2\beta \frac{v^2}{\Lambda^2}.$$

CPViolation in $h \rightarrow \tau^+ \tau^-$

$$\mathcal{L}_{\text{pheno}} \supset -m_{\tau} \,\bar{\tau}\tau - \frac{y_{\tau}}{\sqrt{2}} \,h\bar{\tau}(\cos\Delta + \mathrm{i}\gamma_5\sin\Delta)\tau$$

• There are some indirect bounds on the phase and overall coupling.

$$\kappa_f = \frac{y_f}{y_f^{SM}} \cos \Delta$$
$$\tilde{\kappa}_f = \frac{y_f}{y_f^{SM}} \sin \Delta$$

Brod, Haisch, Zupan: 1310.1385

CPViolation in $h \rightarrow \tau^+ \tau^-$

$$\mathcal{L}_{\text{pheno}} \supset -m_{\tau} \, \bar{\tau} \tau - \frac{y_{\tau}}{\sqrt{2}} \, h \bar{\tau} (\cos \Delta + \mathrm{i} \gamma_5 \sin \Delta) \tau$$

- The tau spin correlation is sensitive to the CP phase, Δ .
- The tau spin information is encoded in the momentum distribution of its decay products.
- We consider the decay of τ → ρν with subsequent decay of ρ[±] → π[±]π⁰ (26% of BF)

- Neglect diagram with the neutral pion exchanged.
- Assume all intermediate particles are onshell.
- Neglect the charged and neutral pion mass difference

The Amplitude

Define

$$q_{\pm} \equiv p_{\pi^{\pm}} - p_{\pi^{0\pm}}$$

we can simplify the amplitude to be

The Amplitude

Squaring the amplitude $|\mathcal{M}|^2 \propto P_{A,S} + P_{\Delta,S} + P_{\Delta,S} + P_{\Delta,S}$

The most interesting term is

$$P_{\Delta,S} \equiv -e^{2i\Delta} \left[(k_{-} \cdot p_{\tau^{+}})(k_{+} \cdot p_{\tau^{-}}) - (p_{\tau^{-}} \cdot p_{\tau^{+}})(k_{-} \cdot k_{+}) - i\epsilon_{\mu\nu\rho\sigma} k_{-}^{\mu} p_{\tau^{-}}^{\nu} k_{+}^{\rho} p_{\tau^{+}}^{\sigma} \right].$$

where

$$\begin{split} k_{\pm}^{\mu} &\equiv y_{\pm} \, q_{\pm}^{\mu} + r \, p_{\nu^{\pm}}^{\mu} \qquad \qquad y_{\pm} \equiv \frac{2q_{\pm} \cdot p_{\tau^{\pm}}}{m_{\tau}^2 + m_{\rho}^2} = \frac{q_{\pm} \cdot p_{\tau^{\pm}}}{p_{\rho^{\pm}} \cdot p_{\tau^{\pm}}} \,, \\ r &\equiv \frac{m_{\rho}^2 - 4m_{\pi}^2}{m_{\tau}^2 + m_{\rho}^2} \approx 0.14 \,. \end{split}$$

The Amplitude

At the Higgs rest frame

$$P_{\Delta,S} = -2\mathrm{e}^{\mathrm{i}(2\Delta-\Theta)} \left|\vec{E}_{+}\right| \left|\vec{E}_{-}\right|$$

E₊E- plane is perpendicular to the tau velocity

O Variable

 $|\mathcal{M}|^2 \propto P_{\mathcal{A},S} + P_{\Delta,\mathfrak{F}} - 4|\vec{E}_+||\vec{E}_-|\cos(2\Delta-\Theta)|$

- The CP phase Δ can be determined by observing the minimum of the Θ distribution.
- The Θ distribution for $Z \rightarrow \tau^+ \tau^-$ is flat.

Truth level Θ and truth level ϕ^* for $\Delta = 0$

0.10

Comparison with previous works

0.00

0

- The acoplanarity angle (φ^*) between the decay plane of ρ^+ and ρ^- in the $\rho^+\rho^-$ rest frame can also be used to distinguish various CP phase; Bower, et.al. (hep-ph/0204292).
- Other studies e.g. Berge,et.al. (1308.2674) are based on reconstructing the impact parameter vectors of the visible τ decay products.

ILC

- Our Θ variable requires construction of the Higgs rest frame, hence knowledge of neutrino momenta is required.
- The neutrino momenta can be reconstructed at the ILC with a twofold ambiguity

- Detector effect was not included in this estimate.
- The accuracy is obtained by comparing the $\Delta = 0$ hypothesis with an alternative $\Delta = \delta$ hypothesis.

$\sigma_{e^+e^- ightarrow hZ}$	0.30 pb
${\rm Br}(h \to \tau^+ \tau^-)$	6.1%
${ m Br}(au^- o \pi^- \pi^0 u)$	26%
$Br(Z \rightarrow visibles)$	80%
N _{events}	990
Accuracy	4.4°

LHC

- At the LHC, the neutrino momentum can not be reconstructed.
- We employ collinear approximation for neutrino momenta.
- We consider pp → h j process at 14 TeV LHC with the Higgs is produced by gluon fusion process.

LHC

- The main backgrounds are Z+jets and QCD.
- We employ cuts:

leading jet $p_{\rm T} > 140 \text{ GeV}$ with $|\eta| < 2.5$. $E_{\rm T} > 40 \text{ GeV}$, $p_{\rm T}^{\rho^{\pm}} > 45 \text{ GeV}$, $|\eta^{\rho^{\pm}}| < 2.1$, $m_{\rm coll} > 120 \text{ GeV}$,

- We assume that the QCD background is 10% of Z+jets.
- Again, pileups and detector effects are not considered.
- We assume 50% and 70% tau tagging efficiencies.

LHC

	hj	Z j
Inclusive σ	2.0 pb	$420~\rm{pb}$
$Br(\tau^+\tau^- decay)$	6.1%	3.4%
$\operatorname{Br}(\tau^- \to \pi^- \pi^0 \nu)$	26%	26%
Cut efficiency	18%	0.24%
Nevents	1100	1800

τ_h efficiency	50%	70%
3σ	$L = 550 \text{ fb}^{-1}$	$L = 300 {\rm ~fb}^{-1}$
5σ	$L = 1500 \text{ fb}^{-1}$	$L = 700 \ {\rm fb}^{-1}$
$Accuracy(L = 3 \mathrm{ab}^{-1})$	11.5°	8.0°

Pseudoscalar and scalar hypotheses can be distinguished at 3 sigma with 550 fb⁻¹ assuming 50% tau tagging efficiency.

Possible Improvements

- Better reconstruction of tau and Higgs frames.
- Consider other production and decay modes.

Indirect vs direct searches

May indirectly probe the Higgs coupling to the first generation fermions, if the signal is discovered.

$\sigma_{e^+e^- ightarrow hZ}$	0.30 pb
$\operatorname{Br}(h \to \tau^+ \tau^-)$	6.1%
${\rm Br}(\tau^- o \pi^- \pi^0 u)$	26%
$Br(Z \to visibles)$	80%
N_{events}	990
Accuracy	4.4°

τ_h efficiency	50%	70%
3σ	$L = 550 {\rm ~fb^{-1}}$	$L = 300 \text{ fb}^{-1}$
5σ	$L = 1500 \text{ fb}^{-1}$	$L = 700 \text{ fb}^{-1}$
$Accuracy(L = 3 \text{ ab}^{-1})$	11.5°	8.0°

ILC

LHC

Backup

An UV Completion

$$\mathcal{L}_{\text{tree}} = \mathcal{L}_{\text{SM}-y_{\tau}} + |D\Phi|^2 - m_{\Phi}^2 |\Phi|^2 - \lambda_{\Phi} |\Phi|^4$$

$$- (yH\ell_{3\text{L}}^{\dagger}\tau_{\text{R}} + y'\Phi\ell_{3\text{L}}^{\dagger}\tau_{\text{R}} + \lambda'(\Phi^{\dagger}H)|H|^2 + \text{c.c.}),$$
(A1)

$$\mathcal{L}_{\text{dim-6}} = \frac{|\lambda'|^2}{m_{\Phi}^2} |H|^6 + \left(\frac{\lambda' y'}{m_{\Phi}^2} |H|^2 H \ell_{3\text{L}}^{\dagger} \tau_{\text{R}} + \text{c.c.}\right).$$

CMS tau measurement

CMS, JINST 7 P01001