Higgs Flavor Physics

Yonit Hochberg

[1] Dery, Efrati, YH and Nir JHEP 1305, 039 (2013)
 [2] Dery, Efrati, Hiller, YH and Nir JHEP 1308, 006 (2013)
 [3] YH, Spira and Nir, work in progress

Outline

- Why is higgs + flavor interesting?
- Demonstrate how it is interesting:
 - Observables
 - SM predictions
 - Examples

Why is it interesting?

- "The God particle was discovered in the black hole machine"
- Golden channels $h \rightarrow \gamma \gamma, ZZ^*$ with measured rates

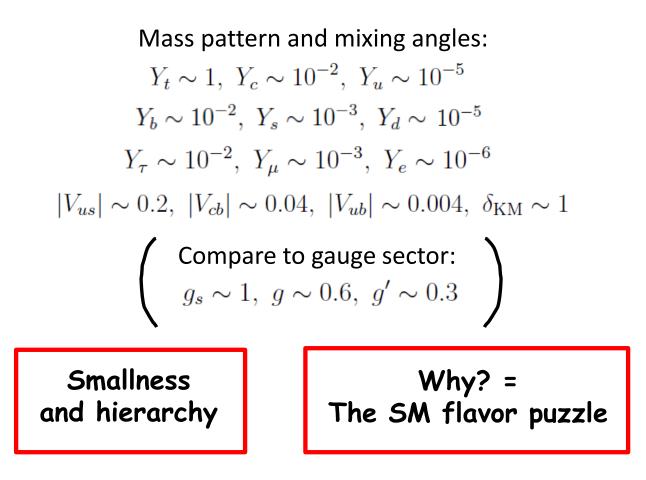
$$R_{\gamma\gamma} = 1.1 \pm 0.2$$
$$R_{ZZ^*} = 1.1 \pm 0.2$$
$$R_f \equiv \frac{\sigma(pp \to h) \text{BR}(h \to f)}{[\sigma(pp \to h) \text{BR}(h \to f)]^{\text{SM}}}$$

- First indication that $Y_t = \mathcal{O}(1)$
- A new arena for the exploration of flavor physics

• The Standard Model flavor puzzle:

Why are the flavor parameters small and hierarchical?

Flavor goals



Approximate symmetry? Strong dynamics? Location in extra dimension?...

• The Standard Model flavor puzzle:

Why are the flavor parameters small and hierarchical?

• <u>The New Physics flavor puzzle:</u>

If there is new physics at the TeV scale, why are flavor changing neutral currents so small?

Flavor goals

Flavor structure of NP @ the TeV scale must be highly non-generic

Operator	Bounds on c_{ij} ($\Lambda = 1$ TeV)		Observables
	Re	Im	
$(\bar{s}_L \gamma^\mu d_L)^2$	$9.0 imes 10^{-7}$	$3.4 imes 10^{-9}$	$\Delta m_K; \epsilon_K$
$(\bar{s}_R d_L)(\bar{s}_L d_R)$	6.9×10^{-9}	2.6×10^{-11}	$\Delta m_K; \epsilon_K$
$(\bar{c}_L \gamma^\mu u_L)^2$	$5.6 imes 10^{-7}$	$1.0 imes 10^{-7}$	$\Delta m_D; q/p , \phi_D$
$(\bar{c}_R u_L)(\bar{c}_L u_R)$	$5.7 imes 10^{-8}$	$1.1 imes 10^{-8}$	$\Delta m_D; q/p , \phi_D$
$(\bar{b}_L \gamma^\mu d_L)^2$	3.3×10^{-6}	$1.0 imes 10^{-6}$	$\Delta m_{B_d}; S_{\psi K_S}$
$(\bar{b}_R d_L)(\bar{b}_L d_R)$	$5.6 imes 10^{-7}$	$1.7 imes 10^{-7}$	$\Delta m_{B_d}; S_{\psi K_S}$
$(\bar{b}_L \gamma^\mu s_L)^2$	7.6×10^{-5}		Δm_{B_s}
$(\bar{b}_R s_L)(\bar{b}_L s_R)$	1.3×10^{-5}		Δm_{B_s}

 $\frac{c_{ij}}{\Lambda^2} \bar{q}_i q_j \bar{q}_i q_j$

Image from Isidori, Nir, Perez, Ann. Rev. Nucl. Part. Sci. 60, 355 (2010)

Why/How? = The NP flavor puzzle

Minimal flavor violation? Approximate U(1)? Approximate U(2)? ...

• The Standard Model flavor puzzle:

Why are the flavor parameters small and hierarchical?

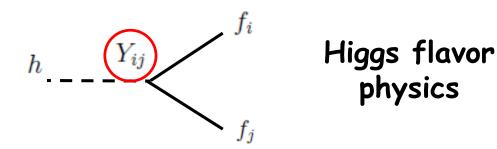
• The New Physics flavor puzzle:

If there is new physics at the TeV scale, why are flavor changing neutral currents so small?

• Are the two puzzles related?

Why is it interesting?

Opportunity to probe flavor parameters of h = better our understanding of flavor puzzles (+ don't assume, measure!)



Sector in which we have best experimental chance: charged leptons

How is it interesting?

- Focus on $h \rightarrow \tau \tau, \mu \mu, \tau \mu$
- Current status @ ATLAS: $R_{\tau\tau} = 1.4 \pm 0.5, R_{\mu\mu} < 9.8$ @ CMS: $R_{\tau\tau} = 0.9 \pm 0.3, R_{\mu\mu} < 7.4$
- In the future:

Observable	SM	
$R_{\tau^+\tau^-}$	1	
$X_{\mu\mu} \equiv \frac{\mathrm{BR}(h \to \mu^+ \mu^-)}{\mathrm{BR}(h \to \tau^+ \tau^-)}$	$\left(m_{\mu}/m_{ au} ight)^2$	$\longleftarrow (Y_{\mu}/Y_{\tau})^2$
$X_{\mu\tau} \equiv \frac{\mathrm{BR}(h \to \mu^{\pm} \tau^{\mp})}{\mathrm{BR}(h \to \tau^{+} \tau^{-})}$	0	$\longleftarrow (Y_{\mu\tau}/Y_{\tau})^2$

• What can we learn from $R_{\tau\tau}, X_{\mu\mu}, X_{\tau\mu}$?

Theoretical predictions

 $X_{\mu\mu} \equiv \frac{\text{BR}(h \to \mu^+ \mu^-)}{\text{BR}(h \to \tau^+ \tau^-)}$ theoretically very clean!

• Total width effects cancel

• LO:
$$\Gamma^{\text{LO}}(h \to \ell^+ \ell^-) = \frac{G_F m_h}{4\sqrt{2}\pi} m_\ell^2 \beta_\ell^3, \qquad \beta_\ell = (1 - 4m_\ell^2/m_h^2)^{1/2}$$

• + EW corrections: $X_{\mu^+\mu^-} = \left[\frac{m_\mu(m_h)}{m_\tau(m_h)}\right]^2 \left[1 + \frac{6(m_\tau^2 - m_\mu^2)}{m_h^2}\right]$

YH, Aspen, Jan. 20 2014

Indirect constraints

Process	Yukawa couplings	Upper bound
$\mu \to e \gamma$	$ Y_{\mu} + \sqrt{2} r_{\mu} \sqrt{ Y_{\mu e} ^2 + Y_{e\mu} ^2}$	1.9×10^{-6}
$\tau \to e \gamma$	$ Y_{\tau} + \sqrt{2} r_{\tau} \sqrt{ Y_{\tau e} ^2 + Y_{e\tau} ^2}$	1.1×10^{-3}
$\tau \to \mu \gamma$	$ Y_{\tau} + \sqrt{2} r_{\tau} \sqrt{ Y_{\tau\mu} ^2 + Y_{\mu\tau} ^2}$	1.2×10^{-3}
$(g-2)_e$	$\operatorname{Re}(Y_{\mu e}Y_{e\mu})$	-0.0400.055
$(g-2)_e$	$\operatorname{Re}(Y_{\tau e}Y_{e\tau})$	$[-4.35.8] \times 10^{-3}$
$(g-2)_{\mu}$	$\operatorname{Re}(Y_{\tau\mu}Y_{\mu\tau})$	$(5.7 \pm 1.6) \times 10^{-3}$
$(g-2)_{\mu}$	$\operatorname{Re}(Y^2_{\mu})$	$(5.2 \pm 1.4) \times 10^{-2}$
d_{e}	$ \mathrm{Im}(Y_{\tau e}Y_{e\tau}) $	2.3×10^{-9}
d_{e}	$ \mathrm{Im}(Y_{\mu e}Y_{e\mu}) $	2.1×10^{-8}
d_{e}	$ \mathrm{Im}(Y_e^2) $	2.3×10^{-6}

Sector where these are tight: $|Y_{\mu e}| \leq 10^{-5}$

In $\mu\mu$ LHC is doing better than this (and in $\tau\mu$ it can be doing better than this) Harnik, Kopp, Zupan JHEP 1303, 026 (2013)

(See also Davidson, Verdier PRD 86, 111701 (2012))

Proof of principle

$$\mathcal{L}_Y = -m_i \bar{\ell}_L^i \ell_R^i - \frac{Y_{ij}}{\sqrt{2}} \bar{\ell}_L^i \ell_R^j h + \text{h.c.}, \quad i, j = e, \mu, \tau$$

(In SM:
$$Y_{ij} = \delta_{ij}\sqrt{2}m_i/v$$
)

General procedure:

- Write down favorite model
- Expand around vacuum, rotate to Higgs mass basis and to charged lepton mass basis, and read off the couplings
- Insert into observables

Ex. I: MHDM with NFC

- Multi Higgs doublet model (MHDM), where only one doublet ϕ_ℓ couples to the charged lepton sector
- $h = V_{h\ell}\phi_{\ell}^{0} + \dots$, and $-\mathcal{L}_{Y} \supset \frac{Y_{ij}}{\sqrt{2}}\bar{\ell}_{L}^{i}\ell_{R}^{j}h + h.c.$

Ex. I: MHDM with NFC

- Multi Higgs doublet model (MHDM), where only one doublet ϕ_ℓ couples to the charged lepton sector
- $h = V_{h\ell}\phi_{\ell}^0 + \dots$, and $-\mathcal{L}_Y \supset \frac{Y_{ij}}{\sqrt{2}}\bar{\ell}_L^i\ell_R^jh + h.c.$

1)
$$Y_{\tau} = \frac{V_{h\ell}^* v}{\langle \phi_{\ell} \rangle} \frac{\sqrt{2}m_{\tau}}{v}$$

flavor SM Yukawa
universal coupling
2) $\frac{Y_{\mu}}{Y_{\tau}} = \frac{m_{\mu}}{m_{\tau}}$
3) $Y_{\mu\tau} = Y_{\tau\mu} = 0$
In 2HDM type II
(& MSSM):
 $Y_{\tau} = -\frac{\sin \alpha}{\cos \beta} \frac{\sqrt{2}m_{\tau}}{v}$

Ex. II: 1HDM with MFV

• SM + non-renormalizable operators:

$$-\mathcal{L}_Y = \lambda_{ij}\overline{L}_i E_j \phi + \frac{\lambda'_{ij}}{\Lambda^2}\overline{L}_i E_j \phi(\phi^{\dagger}\phi) + \text{h.c.}, \quad \phi = \frac{1}{\sqrt{2}}(v+h)$$

Ex. II: 1HDM with MFV

• SM + non-renormalizable operators:

$$-\mathcal{L}_Y = \lambda_{ij}\overline{L}_i E_j \phi + \frac{\lambda'_{ij}}{\Lambda^2}\overline{L}_i E_j \phi(\phi^{\dagger}\phi) + \text{h.c.}, \quad \phi = \frac{1}{\sqrt{2}}(v+h)$$

- Minimal flavor violation (MFV) cheat sheet:
 - In absence of lepton Yukawas, SM has global flavor symmetry

$$SU(3)_L \times SU(3)_E$$
, with $L \sim (3,1)$
 $E \sim (1,\overline{3})$

- Promote Yukawa to spurion: $Y \sim (3, \overline{3})$
- MFV requires all terms in the Lagrangian be formally invariant
 → insert appropriate powers of Yukawas into new terms.

Ex. II: 1HDM with MFV

• SM + non-renormalizable operators:

$$-\mathcal{L}_Y = \lambda_{ij}\overline{L}_i E_j \phi + \frac{\lambda'_{ij}}{\Lambda^2}\overline{L}_i E_j \phi(\phi^{\dagger}\phi) + \text{h.c.}, \quad \phi = \frac{1}{\sqrt{2}}(v+h)$$

• **MFV:**
$$\lambda' = a\lambda + b\lambda\lambda^{\dagger}\lambda + \mathcal{O}(\lambda^5)$$

1)
$$Y_{\tau} = \left(1 + \frac{av^2}{\Lambda^2}\right) \frac{\sqrt{2}m_{\tau}}{v}$$

2) $\frac{Y_{\mu}}{Y_{\tau}} = \frac{m_{\mu}}{m_{\tau}} \left(1 - \frac{2b(m_{\tau}^2 - m_{\mu}^2)}{\Lambda^2}\right)$
3) $Y_{\mu\tau} = Y_{\tau\mu} = 0$

Ex. III: 1HDM with FN

• SM + non-renormalizable operators:

$$-\mathcal{L}_Y = \lambda_{ij}\overline{L}_i E_j \phi + \frac{\lambda'_{ij}}{\Lambda^2}\overline{L}_i E_j \phi(\phi^{\dagger}\phi) + \text{h.c.}, \quad \phi = \frac{1}{\sqrt{2}}(v+h)$$

• Froggatt-Nielsen (FN) cheat sheet:

- Horizontal $U(1)_H$ symmetry = different charges for different generations
- Broken by small parameter ϵ_H
- Generates parametric pattern:

couplings, masses and mixing angles

$$\lambda_{ij} \propto \epsilon_H^{H(E_j) - H(L_i)}$$
$$m_{\ell_i} / v \sim \epsilon_H^{H(E_i) - H(L_i)}$$
$$|U_{ij}| \sim \epsilon_H^{H(L_j) - H(L_i)}$$

Ex. III: 1HDM with FN

• SM + non-renormalizable operators:

$$-\mathcal{L}_Y = \lambda_{ij}\overline{L}_i E_j \phi + \frac{\lambda'_{ij}}{\Lambda^2}\overline{L}_i E_j \phi(\phi^{\dagger}\phi) + \text{h.c.}, \quad \phi = \frac{1}{\sqrt{2}}(v+h)$$

• **<u>FN</u>**: Parametric pattern $\lambda'_{ij} = \mathcal{O}(1) \times \lambda_{ij}$

1)
$$Y_{\tau} = \frac{\sqrt{2}m_{\tau}}{v} \left[1 + \mathcal{O}\left(\frac{v^2}{\Lambda^2}\right) \right]$$

2) $\frac{Y_{\mu}}{Y_{\tau}} = \frac{m_{\mu}}{m_{\tau}} \left[1 + \mathcal{O}\left(\frac{v^2}{\Lambda^2}\right) \right]$
3) $Y_{\mu\tau} = \mathcal{O}\left(\frac{|U_{23}|vm_{\tau}}{\Lambda^2}\right), \quad Y_{\tau\mu} = \mathcal{O}\left(\frac{vm_{\mu}}{|U_{23}|\Lambda^2}\right)$

Ex. IV: 2HDM with MFV

- 2HDM \rightarrow 2 Yukawa matrices: $-\mathcal{L}_Y = \bar{L}\Phi_1 Y_1 E + \bar{L}\Phi_2 Y_2 E$
- Leptonic MFV =

single spurion $(3,\bar{3})$ breaks the symmetry $SU(3)_L \times SU(3)_E$

• <u>Find:</u> 1) No flavor-violating decays

2) If resummation is important ($\rightarrow (Y_A)_{\tau} \sim 1$): $\mathcal{O}(1)$ deviations in $R_{\tau\tau} = 1$ and $X_{\mu\mu} = \frac{\text{BR}(h \rightarrow \mu\mu)}{\text{BR}(h \rightarrow \tau\tau)} = \frac{m_{\mu}^2}{m_{\tau}^2}$

Predictions

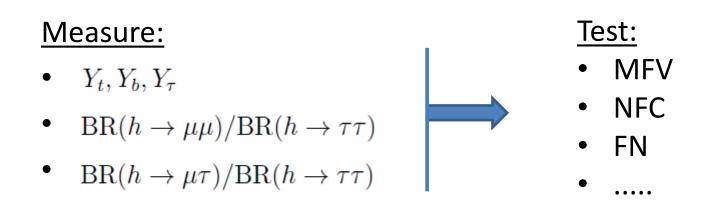
Model	$\left(Y_{\tau}/Y_{ au,\mathrm{SM}} ight)^2$	$X_{\mu\mu}/(m_{\mu}^2/m_{\tau}^2)$	$X_{\mu\tau}$
SM	1	1	0
MHDM + NFC	$(V_{h\ell}^*v/v_\ell)^2$	1	0
MSSM	$(\sin \alpha / \cos \beta)^2$	1	0
1HDM + MFV	$1 + 2av^2/\Lambda^2$	$1-4bm_\tau^2/\Lambda^2$	0
1HDM + FN	$1 + \mathcal{O}(v^2/\Lambda^2)$	$1 + \mathcal{O}(v^2/\Lambda^2)$	$\mathcal{O}(U_{23} ^2 v^4 / \Lambda^4)$
$\frac{2\text{HDM} + \text{MFV}}{(Y_A)_\tau \sim 1}$	$\mathcal{O}(1)$	$\mathcal{O}(1)$	0

$$X_{\mu\mu} \equiv \frac{\mathrm{BR}(h \to \mu^+ \mu^-)}{\mathrm{BR}(h \to \tau^+ \tau^-)}$$
$$X_{\mu\tau} \equiv \frac{\mathrm{BR}(h \to \mu^\pm \tau^\mp)}{\mathrm{BR}(h \to \tau^+ \tau^-)}$$

Dery, Efrati, YH, Nir, JHEP 1305, 039 (2013) Dery, Efrati, Hiller, YH, Nir, JHEP 1308, 006 (2013)

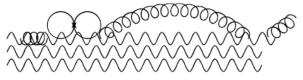
Summary

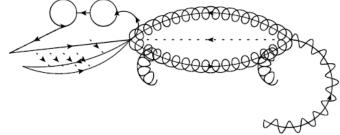
- Higgs = opportunity for flavor
- (Progress in the up sector, probe Y_c, Y_{tc} , $BR(t \rightarrow hc)$)



Thanks!







YH, Aspen, Jan. 20 2014

Theoretical predictions

$$\begin{split} \Gamma(h \to \ell^+ \ell^-) &= \Gamma^{\rm LO} \left(1 + \delta_{\rm QED}^\ell \right) \left(1 + \delta_{\rm weak}^\ell \right) \\ \delta_{\rm QED}^\ell &= \frac{3\alpha}{2\pi} \left(\frac{3}{2} - \log \frac{m_h^2}{m_\ell^2} \right) \,, \\ \delta_{\rm weak}^\ell &= \frac{G_F}{8\pi^2 \sqrt{2}} \left[7m_t^2 + m_W^2 \left(-5 + \frac{3\log c_W^2}{s_W^2} \right) - m_Z^2 \frac{6(1 - 8s_W^2 + 16s_W^4) - 1}{2} \right] \end{split}$$

- 2HDM \rightarrow Two Yukawa matrices: $-\mathcal{L}_Y = \bar{L}\Phi_1 Y_1^E E + \bar{L}\Phi_2 Y_2^E E$
- Define leptonic MFV = single spurion $(3,\overline{3})$ breaks the symmetry $SU(3)_L \times SU(3)_E$
- Spurion options: \hat{Y}^E , Y_1^E , Y_2^E , $Y_M^E \equiv \sqrt{2}M^E/v$
- No loss of generality for $Y_Z^E = a_Z \hat{Y}^E + \dots$

Dery, Efrati, Hiller, YH, Nir, JHEP 1308, 006 (2013)

- 2HDM \rightarrow Two Yukawa matrices: $-\mathcal{L}_Y = \bar{L}\Phi_1 Y_1^E E + \bar{L}\Phi_2 Y_2^E E$
- Define leptonic MFV = single spurion $(3, \overline{3})$ breaks the symmetry $SU(3)_L \times SU(3)_E$
- Spurion options: \hat{Y}^E , Y_1^E , Y_2^E , $Y_M^E \equiv \sqrt{2}M^E/v$
- No loss of generality for $Y_Z^E = a_Z \hat{Y}^E + \dots$
- Only one of neutral scalars h, H, A couplings to fermions is independent: $Y_M^E = -s_{\alpha-\beta}Y_h^E + c_{\alpha-\beta}Y_H^E$

$$Y_{A}^{E} = -s_{\alpha-\beta}Y_{h}^{E} + s_{\alpha-\beta}Y_{H}^{E}$$
$$Y_{A}^{E} = +c_{\alpha-\beta}Y_{h}^{E} + s_{\alpha-\beta}Y_{H}^{E}$$

(a-β) known from hZZ coupling

Dery, Efrati, Hiller, YH, Nir, JHEP 1308, 006 (2013)

• For any S = h, H, A:

1) $(Y_S)_{\ell\ell'} = 0$ for flavors $\ell \neq \ell'$ 2) $\frac{(Y_S)_e}{(Y_S)_{\mu}} \simeq \frac{m_e}{m_{\mu}}$ 3) $\frac{[(Y_S)_e/(Y_S)_{\tau}]^2 - (m_e/m_{\tau})^2}{[(Y_S)_{\mu}/(Y_S)_{\tau}]^2 - (m_{\mu}/m_{\tau})^2} = \frac{m_e^2}{m_{\mu}^2} \left(1 + \frac{m_{\mu}^2 - m_e^2}{m_{\tau}^2}\right)$ • If $\hat{Y}_{\tau} \sim 1$ ($\rightarrow (Y_A)_{\tau} \sim 1$):

 $\mathcal{O}(1)$ deviations from $R_{\tau\tau} = 1$ and $\frac{\text{BR}(h \to \mu\mu)}{\text{BR}(h \to \tau\tau)} = \frac{m_{\mu}^2}{m_{\tau}^2}$

Dery, Efrati, Hiller, YH, Nir, JHEP 1308, 006 (2013)

$$Y_{M}^{F} = +c_{\beta}Y_{1}^{F} + s_{\beta}Y_{2}^{F}$$

$$Y_{A}^{F} = -s_{\beta}Y_{1}^{F} + c_{\beta}Y_{2}^{F}$$

$$Y_{h}^{F} = -s_{\alpha}Y_{1}^{F} + c_{\alpha}Y_{2}^{F}$$

$$Y_{H}^{F} = +c_{\alpha}Y_{1}^{F} + s_{\alpha}Y_{2}^{F}$$

$$Y_{H}^{F} = -s_{\alpha-\beta}Y_{h}^{F} + c_{\alpha-\beta}Y_{H}^{F},$$

$$Y_{A}^{F} = +c_{\alpha-\beta}Y_{h}^{F} + s_{\alpha-\beta}Y_{H}^{F}.$$

$$(Y_{M})_{\tau}^{2} + (Y_{A})_{\tau}^{2} = (Y_{h})_{\tau}^{2} + (Y_{H})_{\tau}^{2}$$

In 2HDM MFV:

$$(Y^U_h)_{ct}/(Y^U_h)_{tt} \lesssim \hat{Y}^2_b V_{cb}$$

and so

 $\mathrm{BR}(t\to ch)/\mathrm{BR}(t\to sW)\lesssim 1$

Current status: BR $(t \rightarrow hc) < 0.83\%$

ATLAS-CONF-2013-081

$$\begin{split} W^S_{\tau\mu} &\equiv \frac{(Y^E_S)_\tau}{y_\tau} - \frac{(Y^E_S)_\mu}{y_\mu}, \quad S=h,H,A \\ \frac{W^H_{\tau\mu}}{W^h_{\tau\mu}} &= \tan(\alpha-\beta) = \frac{c^h_V}{c^H_V} \end{split}$$

Ex. V: Higgs-dependent Yukawas

• Only Y_t renormalizable, all other Yukawas from nonrenormalizable terms:

$$\mathcal{L} \supset -\frac{\lambda'_{33}}{\Lambda^2} \overline{L_3} E_3 \phi(\phi^{\dagger} \phi) - \frac{\lambda'_{23}}{\Lambda^2} \overline{L_2} E_3 \phi(\phi^{\dagger} \phi) - \frac{\lambda''_{22}}{\Lambda^4} \overline{L_2} E_2 \phi(\phi^{\dagger} \phi)^2 - \frac{\lambda''_{32}}{\Lambda^4} \overline{L_3} E_2 \phi(\phi^{\dagger} \phi)^2 + \text{h.c.}$$

1)
$$Y_{\tau} \simeq 3 \frac{\sqrt{2}m_{\tau}}{v}, \quad Y_{\mu} \simeq 5 \frac{\sqrt{2}m_{\mu}}{v}$$

2) $\frac{Y_{\mu}}{Y_{\tau}} \simeq \frac{5}{3} \frac{m_{\mu}}{m_{\tau}}$
3) $Y_{\tau\mu} = \mathcal{O}(Y_{\mu}), \quad \frac{Y_{\mu\tau}}{Y_{\tau\mu}} = \frac{m_{\mu}}{m_{\tau}}$