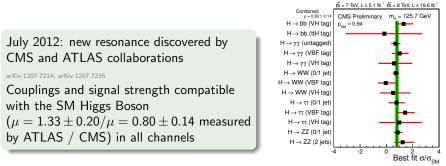


- $\textcircled{2} H \rightarrow ZZ \rightarrow 4I$
- $\bigcirc H \rightarrow WW \rightarrow 2I2\nu$
- $\textcircled{4} H \rightarrow \gamma \gamma$
- 5 Results, combination and conclusions



G. Ortona INFN & University of Torino

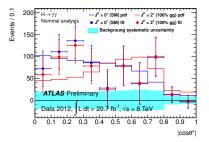
PACT

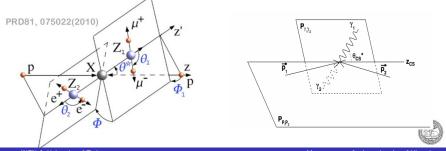
Measurement of spin and parity of Higgs boson

Motivations

What are the new particle's quantum numbers J^{PC} ? SM predicts $J^{PC} = 0^+$

- $\bullet\,$ Observation in diphoton implies C=1 and disfavours J=1 due to Landau-Yang theorem
 - ZZ, WW channels can test spin-1 hypothesis for independent confirmation and mixtures
- Observation in WW favours J=0 (biased selection)
- Observation in ZZ, WW disfavour P=-1


Next step is to test the 0⁺ hypothesis against alternative models



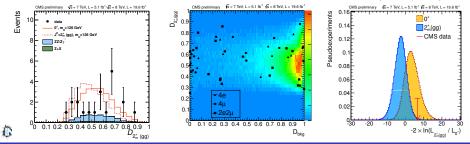
G. Ortona INFN & University of Torino

Testing spin-parity

- For each channel, find variables that are able to discriminate between the SM and the alternative hypotheses
- $\bullet~$ We test spin-parity $\rightarrow~$ angles are what we are looking for
- Different channels \rightarrow different kinematic properties

G. Ortona INFN & University of Torino

IN


Measurement of spin and parity of Higgs boson

Frontiers in Particle Physics: From Dark Matter to the LHC and Beyond, 18-24 January 2014, Aspen (USA)

2014-01-20 4 / 23

Testing spin-parity: likelihood

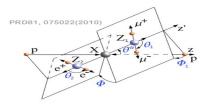
- Looking at a single variable is usually not enough to obtain good discrimination
- From simulations (and control regions), obtain the distributions for background, signal and alternative hypotheses events in the space of the discriminating variables → likelihood distributions for signals/models
- *Pseudo-experiments* to generate the distribution of the test statistics $q = -2 \log \frac{L_{SM}}{L_{IP}}$ under the SM/alternative hypothesis.
- Compare with results observed in the data q_{obs} , $CL_s = \frac{P(q \ge q_{obs}|S_2+B)}{P(q \ge q_{obs}|S_1+B)}$

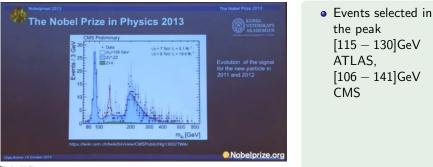
G. Ortona INFN & University of Torino

Models tested

		CMS		
JP	prod	channel		
0-	any	ZZ,WW	pseudoscalar	_
0_{h}^{+}	any	ZZ	scalar high dim op	
1^{-}	$q\bar{q}$	ZZ		
1^{-}	any	ZZ		
1^+	$q\bar{q}$	ZZ		
1^+	any	ZZ		
2^{+}_{m}	gg	ZZ,WW, $\gamma\gamma$	grav, min. coupl.	
2^{+}_{m}	$q\bar{q}$	ZZ,WW, $\gamma\gamma$	grav, min. coupl.	
$2^+_{ m m}$	any	ZZ,WW, $\gamma\gamma$	grav, min. coupl.	
$2^{+}_{\ b}$	gg	ZZ	RS grav, SM in bulk	
2^{+}_{m} $2^{+}_{\ b}$ $2^{+}_{\ h}$	gg	ZZ	tensor high dim op	
2^{-}_{h}	gg	ZZ	pseudo-tensor	

ATLAS						
JP	prod	channel				
0-	any	ZZ				
1-	any	ZZ,WW				
1+	any	ZZ,WW				
2^{+}_{m}	gg	ZZ,WW, $\gamma\gamma$				
2^{+}_{m}	$q\bar{q}$	ZZ,WW, $\gamma\gamma$				
2^{+}_{m}	any	ZZ,WW, $\gamma\gamma$				



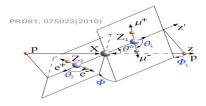

G. Ortona INFN & University of Torino

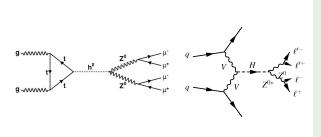
Measurement of spin and parity of Higgs boson

$H \rightarrow 77 \rightarrow 4I$

5 angles and 2 masses fully describe the H \rightarrow ZZ \rightarrow 4/ decay Sensitive to spin AND parity. Main channel to probe the 0⁻ Hypothesis

the peak [115 - 130]GeV ATLAS. [106 - 141]GeV CMS




G. Ortona INFN & University of Torino

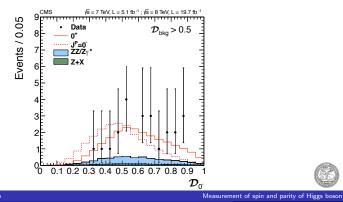
Measurement of spin and parity of Higgs boson

$\rm H \rightarrow ZZ \rightarrow 4I$

5 angles and 2 masses fully describe the H \rightarrow ZZ \rightarrow 4/ decay Sensitive to spin AND parity. Main channel to probe the 0⁻ Hypothesis

- Events selected in the peak [115 - 130]GeV ATLAS, [106 - 141]GeV CMS
- Different $q\bar{q}/gg$ production fractions can be tested for spin-2.

G. Ortona INFN & University of Torino


Measurement of spin and parity of Higgs boson

$H \rightarrow ZZ \rightarrow 4I$

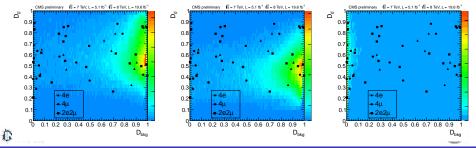
$H \rightarrow ZZ \rightarrow 4I$ analysis in CMS

Matrix Element Likelihood approach arXiv:1208.4018, use the discriminant ۲ variables:

$$D_{J^{P}} = \left[1 + \frac{P_{JP}^{kin}(m_{1}, m_{2}, \Omega | m_{4l})}{P_{0+}^{kin}(m_{1}, m_{2}, \Omega | m_{4l})}\right]^{-1}, D_{bkg} = \left[1 + \frac{P_{bkg}^{kin}(m_{1}, m_{2}, \Omega | m_{4l}) \times P_{bkg}^{mass}(m_{4l})}{P_{0+}^{kin}(m_{1}, m_{2}, \Omega | m_{4l}) \times P_{sig}^{mass}(m_{4l})}\right]^{-1}$$

G. Ortona INFN & University of Torino

Prof


$H \rightarrow ZZ \rightarrow 4I$

$H \rightarrow ZZ \rightarrow 4I$ analysis in CMS

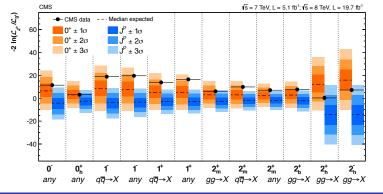
• Matrix Element Likelihood approach arXiv:1208.4018, use the discriminant variables:

$$D_{J^{P}} = \left[1 + \frac{P_{J^{P}}^{kin}(m_{1}, m_{2}, \Omega | m_{4/})}{P_{0+}^{kin}(m_{1}, m_{2}, \Omega | m_{4/})}\right]^{-1}, D_{bkg} = \left[1 + \frac{P_{bkg}^{kin}(m_{1}, m_{2}, \Omega | m_{4/}) \times P_{bkg}^{mass}(m_{4/})}{P_{0+}^{kin}(m_{1}, m_{2}, \Omega | m_{4/}) \times P_{sig}^{mass}(m_{4/})}\right]^{-1}$$

• Build 2D (D_{J^P}, D_{bkg}) templates and Likelihoods for 0⁺ and J^P

G. Ortona INFN & University of Torino

Measurement of spin and parity of Higgs boson


${\rm H} \rightarrow {\rm ZZ} \rightarrow {\rm 4I}$

$H \rightarrow ZZ \rightarrow 4I$ analysis in CMS

• Matrix Element Likelihood approach arXiv:1208.4018, use the discriminant variables:

$$D_{J^{P}} = \left[1 + \frac{P_{J^{P}}^{kin}(m_{1}, m_{2}, \Omega | m_{4/})}{P_{0+}^{kin}(m_{1}, m_{2}, \Omega | m_{4/})}\right]^{-1}, D_{bkg} = \left[1 + \frac{P_{bkg}^{kin}(m_{1}, m_{2}, \Omega | m_{4/}) \times P_{bkg}^{mass}(m_{4/})}{P_{0+}^{kin}(m_{1}, m_{2}, \Omega | m_{4/}) \times P_{sig}^{mass}(m_{4/})}\right]^{-1}$$

- Build 2D (D_{J^P}, D_{bkg}) templates and Likelihoods for 0^+ and J^P
- Tested and excluded 9 models + 3 prod independent models (1⁻, 1⁺, 2⁺)

63

8 / 23

G. Ortona INFN & University of Torino

Measurement of spin and parity of Higgs boson

2014-01-20

$H \rightarrow ZZ \rightarrow 4I$

CMS ZZ spin-parity summary

J ^P model	J^P production	expect ($\mu {=} 1$)	obs. 0^+	obs. J ^P	CLs
0-	any	2.6σ (2.7 σ)	-0.9 <i>0</i>	$+3.8\sigma$	0.04%
0_h^+	any	$1.8\sigma (1.9\sigma)$	$+0.3\sigma$	$+1.6\sigma$	10.0%
1-	$qar{q} o X$	2.9 σ (3.1 σ)	-1.5σ	$>$ 5.0 σ	<0.1%
1-	any	2.7 σ (3.0 σ)	-1.8 σ	$> 5\sigma$	<0.1%
1+	$qar{q} o X$	2.4 σ (2.6 σ)	-1.4 σ	$+4.5\sigma$	0.004%
1+	any	2.3 σ (2.4 σ)	-2.1σ	$> 5\sigma$	<0.1%
2+ _m	gg ightarrow X	$1.8\sigma (1.9\sigma)$	-0.7 <i>o</i>	$+2.7\sigma$	1.5%
2 ⁺ _m	$qar{q} o X$	$1.8\sigma (1.9\sigma)$	-1.6 σ	$+3.8\sigma$	0.16%
2 ⁺	any	$1.5\sigma (1.6\sigma)$	-1.5σ	$+3.3\sigma$	0.8%
2 ⁺ _b	gg ightarrow X	$1.8\sigma (1.9\sigma)$	-1.1σ	$+3.2\sigma$	0.5%
2^{+}_{h}	gg ightarrow X	3.9σ (4.1σ)	$+2.0\sigma$	$+1.9\sigma$	3.0%
2^{-}_{h}	gg ightarrow X	4.4σ (4.8σ)	$+1.1\sigma$	$+3.3\sigma$	0.05%

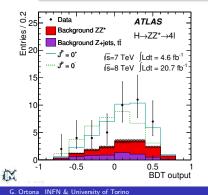
G. Ortona INFN & University of Torino

Measurement of spin and parity of Higgs boson

f_{a3} parameter

Most general spin-0 boson decay amplitude: $A(H \rightarrow ZZ) = v^{-1} \epsilon_1^* \epsilon_2^* \left(a_1 g_{\mu\nu} m_Z^2 + a_2 q_\mu q_\nu + a_3 \epsilon_{\mu\nu\alpha\beta} q_1^\alpha q_2^\beta \right) = A_1 + A_2 + A_3$ 0^+ dominated by A_1 , 0^- by A_3 √s = 7 TeV, L = 5.1 fb⁻¹; √s = 8 TeV, L = 19.7 fb⁻¹ 12 2 Aln ${\cal L}$ ····· Expected 10 • $f_{a3} = |A_3|^2 / (|A_1|^2 + |A_3|^2)$ Observed if $0 < f_{a3} < 1 \rightarrow CP$ violation 8 Interference is negligible • The shape of D_{0^-} discriminant 6 depends on the value of f_{a3} . 4 We can use it to measure f_{a3} • We can set a limit on CP 2 violating contributions to HZZ coupling 02 04 06 08 'n

 $H \rightarrow ZZ \rightarrow 4I$


G. Ortona INFN & University of Torino

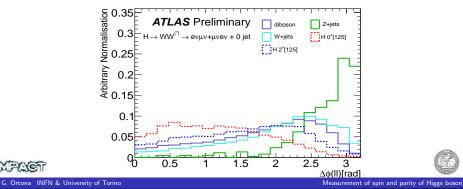
Measurement of spin and parity of Higgs boson

$H \rightarrow ZZ \rightarrow 4I$

$\rm H \rightarrow ZZ \rightarrow 4l$ analysis in ATLAS

- BDT approach using the 5+2 kinematic variables.
- Split in 4 final states $(4e, 4\mu, 2e2\mu, 2\mu 2e)$ to increase sensitivity
- $\bullet~2$ different mass regions: high S/B (121-127) and low S/B (115-121 and 127-130)
- 5 different $q\bar{q}$ fractions tested for spin-2

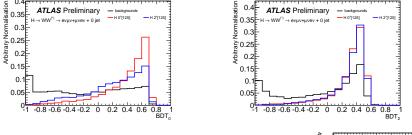
		tested J^P for				tes	ted 0 ⁺ for	
		a	an assumed 0 ⁺			an a	ssumed J^P	CLS
		expe	cted	obse	erved	0	bserved*	1
0^{-}	p_0	0.0	037	0.0)15		0.31	0.022
1^{+}	p_0	0.0	016	0.0	001		0.55	0.002
1-	p_0	0.0	038	0.051		0.15		0.060
$f_{q\bar{q}}$		assumed $J^P = 0^+$)	Spin-0 a exp. p ₀ (.		obs. p ₀ (.	$I^{p} = 0^{+}$	obs. $p_0(J^p = 2^+)$	$\operatorname{CL}_{\operatorname{s}}(J^P=2^+)$
100%		102	0.0		0.9		0.001	0.026
75%		117	0.0		0.9		0.003	0.039
50%		129	0.1		0.9		0.002	0.035
25%		125 0.10			0.9		0.002	0.036
0%	0.0)99	0.0	92	0.5	32	0.079	0.169

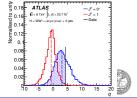

Measurement of spin and parity of Higgs boson

${\rm H} \rightarrow {\rm WW} \rightarrow 2{\rm l}2\nu$

- Low mass resolution due to neutrinos in the final states
- Sensitive to spin-0 vs spin-2 discrimination
- Discriminant variables: $\Delta \Phi_{\parallel}$, m_{\parallel} , p_T^{\parallel} ,

$$m_T = \sqrt{2 p_T'' E_T^{\text{miss}}} (1 - \cos \Delta \Phi_{II-E_T^{\text{miss}}})$$


• Most of the sensitivity from H ightarrow WW ightarrow $e
u_e\mu
u_\mu$


$H \rightarrow WW \rightarrow 2l2\nu$

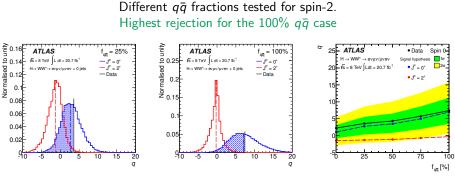
$H \rightarrow WW \rightarrow 2I2\nu$ at ATLAS

- low signals and high backgrounds, event selection is challenging, for spin analysis softer selection with respect to nominal:
 - MET > 20GeV, 0 jets, $p_T^{\parallel} > 20 \text{GeV}, m_{\parallel} < 80 \text{GeV}, \Delta \Phi_{\parallel} < 2.8$.
- The four discriminating variables are used for the BDT in a MVA

2D fit of the spin-0 and spin-2 BDT discriminants Same approach can be used for spin-1 \rightarrow 1^+ excluded at 92% CL, 1^- excluded at 98.3% CL

G. Ortona INFN & University of Torino

er vonr


Frontiers in Particle Physics: From Dark Matter to the LHC and Beyond, 18-24 January 2014, Aspen (USA)

Measurement of spin and parity of Higgs boson 2014-01-20

13 / 23

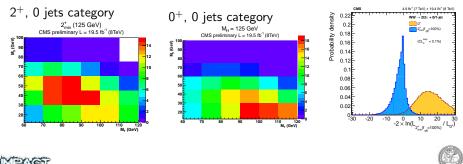
$H \rightarrow WW \rightarrow 2l2\nu$

$H \rightarrow WW \rightarrow 2I2\nu$ at ATLAS: Spin-2 results

Good agreement between spin-0 and data, 100% $q\bar{q}$ rejected at > 99% CL

	f _{qq}	Spin-2 assumed exp. $p_0(J^P = 0^+)$		obs. $p_0(J^P = 0^+)$	obs. $p_0(J^P = 2^+)$	$CL_{s}(J^{p} = 2^{+})$	
_	100%	0.015	0.005	0.552	0.004	0.009	
	75%	0.035	0.007	0.594	0.005	0.012	
	50%	0.042	0.013	0.609	0.007	0.017	1
PA	25%	0.050	0.020	0.614	0.010	0.027	(36)
ર જજા	0%	0.092	0.059	0.725	0.014	0.053	
Ortona	INTENT P.	University of Terine			Moncurement of	coin and parity of High	re hoe

Frontiers in Particle Physics: From Dark Matter to the LHC and Beyond, 18-24 January 2014, Aspen (USA)

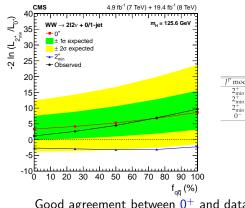

M

2014-01-20

${\rm H} \rightarrow {\rm WW} \rightarrow 2l2\nu$

${ m H} ightarrow { m WW} ightarrow 2{ m l}2 u$ at CMS

- Used to test 0^+ against 0^- or minimal coupling 2^+_{min} (graviton-like)
- Events are divided in 0 or 1 jet categories.
- Similar to ZZ analysis, 2-dimensional templates based on $m_{\rm II}$ and $m_{\rm T}$ distributions
- Different $q\bar{q}$ fractions tested



Measurement of spin and parity of Higgs boson

 ${\rm H} \rightarrow {\rm WW} \rightarrow 2l2\nu$

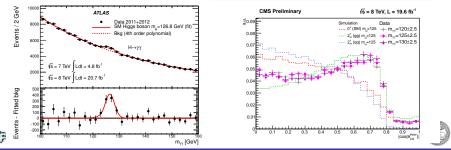
$H \rightarrow WW \rightarrow 2I2\nu$: CMS results

J ^p model	J ^p production	Expected ($\sigma/\sigma_{SM} = 1$)	obs. 0+	obs. J ^p	CLs
2_{min}^+	$f_{q\bar{q}}=0\%$	$1.8\sigma(2.6\sigma)$	$+0.6\sigma$	$+1.2\sigma$	16.3%
2^+_{min}	$f_{q\bar{q}}=50\%$	2.3 \sigma (3.2 \sigma)	$+0.2\sigma$	$+2.1\sigma$	3.3%
2_{min}^+	$f_{q\bar{q}} = 100\%$	2.9 (3.9 c)	-0.2 <i>o</i>	$+3.1\sigma$	0.2%
0-	any	$0.8\sigma (1.1\sigma)$	-0.5 <i>o</i>	$+1.2\sigma$	34.7%

Good agreement between 0⁺ and data, 100% $q \bar{q}$ rejected at > 99% CL

G. Ortona INFN & University of Torino

Propr


Measurement of spin and parity of Higgs boson

$\mathsf{H} \to \gamma \gamma$

- Decay of spin-1 particles to $\gamma\gamma$ forbidden by Landau-Yang. Observation excludes pure spin-1 states. Test spin-0 vs spin-2 models.
- Main discriminant variables for 0 vs 2 is the **polar angle** θ^* , $\cos \theta^* = \frac{\sinh(\Delta \eta_{\gamma})}{\sqrt{1+(p_r^{\gamma\gamma}/m_{\gamma\gamma})^2}} \frac{2p_t^{\gamma1} p_t^{\gamma2}}{m_{\gamma\gamma}^2}$

 $H \rightarrow \gamma \gamma$


- $\cos \theta^*$ uniform in spin-0, depends on the $q\bar{q}$ fraction for spin-2
- Discrimination power between spin-0 and spin-2 degrades increasing the $q\bar{q}$ fraction. Most sensitive to pure gg production mechanism

G. Ortona INFN & University of Torino

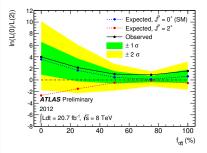
Measurement of spin and parity of Higgs boson

${\rm H} \to \gamma \gamma$ in CMS

G. Ortona INFN & University of Torino

Measurement of spin and parity of Higgs boson

Frontiers in Particle Physics: From Dark Matter to the LHC and Beyond, 18-24 January 2014, Aspen (USA)


...

${\rm H} \to \gamma \gamma$ in ATLAS

- Good rejection power between 0^+ and 2^+ when 100% gg
- Less powerful in the $q \bar{q}$ case
- background strongly peaked in the forward direction, small S/B
- Cuts optimized to minimize the correlation between $m_{\gamma\gamma}$ and $\cos\theta^*$

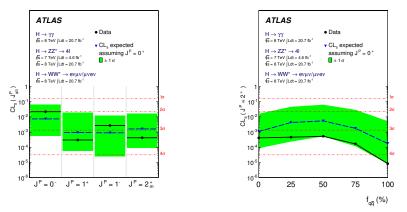
•
$$\frac{p_T^{\gamma 1}}{m_{\gamma \gamma}} > 0.35; \ \frac{p_T^{\gamma 2}}{m_{\gamma \gamma}} > 0.25$$

• Alternative: simultaneous fits of $m_{\gamma\gamma}$ in bins of $\cos\theta^*$ gives compatible results

0% $q\bar{q}$ Spin-2 excluded at 99.3% CL

	$f_{q\bar{q}}$	Spin-2 assumed exp. $p_0(J^P = 0^+)$	Spin-0 assumed exp. $p_0(J^P = 2^+)$	obs. $p_0(J^P = 0^+)$	obs. $p_0(J^P = 2^+)$	$CL_{s}(J^{p} = 2^{+})$
	100%	0.148	0.135	0.798	0.025	0.124
	75%	0.319	0.305	0.902	0.033	0.337
	50%	0.198	0.187	0.708	0.076	0.260
	25%	0.052	0.039	0.609	0.021	0.054
appa.	0%	0.012	0.005	0.588	0.003	0.007

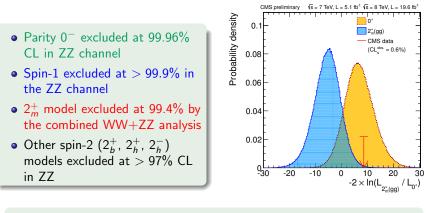
G. Ortona INFN & University of Torino


Measurement of spin and parity of Higgs boson

Frontiers in Particle Physics: From Dark Matter to the LHC and Beyond, 18-24 January 2014, Aspen (USA)

2014-01-20 19 / 23

Results, combination and conclusions


Combination: ATLAS

 0^- hypothesis is excluded at 97.8% CL in the ZZ channel 1^+ hypothesis excluded at 99.97% CL by the combined ZZ+WW analysis 1^- hypothesis excluded at 99.7% CL by the combined ZZ+WW analysis Tested 2^+ excluded at 99.9% CL by the combined ZZ+WW+ $\gamma\gamma$ analysis

G. Ortona INFN & University of Torino

Results: CMS

Mixture studies are the next big goal!

 $\bullet\,$ CMS already set a limit on CP-odd contribution $f_{\rm a3} < 0.51$ at 95% CL

G. Ortona INFN & University of Torino

Conclusions

Summary

- Both CMS and ATLAS results show SM (0⁺) state highly favoured against alternative pure J^P states
- The two experiments show good agreement and consistent and complemetary results
- $\bullet\,$ Best knowledge from both experiments allows to exclude all tested hypotheses of 0^-, spin-1 and spin-2 states with CL >99.9%

Next

- Still some way to go before being able to exclude mixed state
 - But a limit on the fraction of CP-odd contributions to the cross-section $f_{a3} < 0.51$ has already been set by CMS
- In the future, extend the analyses to VBF, VH, ttH, $H \rightarrow au au$, ...

Supported by Università Degli Studi di Torino/Compagnia di San Paolo, grant ORTO11TPXK

G. Ortona INFN & University of Torino

References

ATLAS public results:

- $H \rightarrow ZZ$
 - ATLAS-CONF-2013-013
- $H \rightarrow WW$
 - ATLAS-CONF-2013-031
- $H \rightarrow \gamma \gamma$
 - ATLAS-CONF-2013-029
- Combination
 - ATLAS-CONF-2013-040
 - arXiv:1307.1432

CMS public results:

- $H \rightarrow ZZ$
 - CMS-PAS-HIG-13-002
 - arXiv:1312.5353
- $H \rightarrow WW$
 - CMS-PAS-HIG-13-003
 - arXiv:1312.1129
- $H \to \gamma \gamma$
 - CMS-PAS-HIG-13-016
- Combination
 - CMS-PAS-HIG-13-005

G. Ortona INFN & University of Torino

BACKUP

G. Ortona INFN & University of Torino

Measurement of spin and parity of Higgs boson

Frontiers in Particle Physics: From Dark Matter to the LHC and Beyond, 18-24 January 2014, Aspen (USA)

2014-01-20 23 / 23

Combination: ATLAS

0^- hypothesis is excluded at 97.8% CL in the ZZ channel

Channel	0^- assumed Exp. $p_0(J^P = 0^+)$	0^+ assumed Exp. $p_0(J^P = 0^-)$	Obs. $p_0(J^p = 0^+)$	Obs. $p_0(J^p = 0^-)$	$\operatorname{CL}_{\mathrm{s}}(J^p = 0^-)$
$H \to Z Z^*$	$1.5 \cdot 10^{-3}$	$3.7 \cdot 10^{-3}$	0.31	0.015	0.022

1^+ hypothesis excluded at 99.97% CL by the combined ZZ+WW analysis

Channel	1 ⁺ assumed Exp. $p_0(J^P = 0^+)$	0 ⁺ assumed Exp. $p_0(J^p = 1^+)$	Obs. $p_0(J^p = 0^+)$	Obs. $p_0(J^p = 1^+)$	$\operatorname{CL}_{\mathrm{s}}(J^p = 1^+)$
$H \rightarrow ZZ^*$	$4.6 \cdot 10^{-3}$	$1.6 \cdot 10^{-3}$	0.55	$1.0 \cdot 10^{-3}$	$2.0 \cdot 10^{-3}$
$H \to WW^*$	0.11	0.08	0.70	0.02	0.08
Combination	$2.7 \cdot 10^{-3}$	$4.7 \cdot 10^{-4}$	0.62	$1.2 \cdot 10^{-4}$	$3.0 \cdot 10^{-4}$

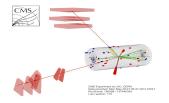
1^- hypothesis excluded at 99.7% CL by the combined ZZ+WW analysis

Channel	1^- assumed Exp. $p_0(J^P = 0^+)$	0^+ assumed Exp. $p_0(J^p = 1^-)$	Obs. $p_0(J^p = 0^+)$	Obs. $p_0(J^p = 1^-)$	$\operatorname{CL}_{\mathrm{s}}(J^p = 1^-)$
$H \rightarrow ZZ^*$	$0.9 \cdot 10^{-3}$	$3.8 \cdot 10^{-3}$	0.15	0.051	0.060
$H \to WW^*$	0.06	0.02	0.66	0.006	0.017
Combination	$1.4 \cdot 10^{-3}$	$3.6 \cdot 10^{-4}$	0.33	$1.8 \cdot 10^{-3}$	$2.7 \cdot 10^{-3}$

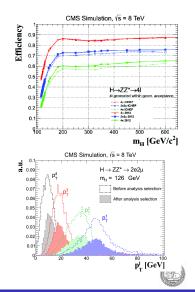
2^+ excluded at 99.9% CL by the combined ZZ+WW+ $\gamma\gamma$ analysis

-	$f_{q\bar{q}}$	2^+ assumed Exp. $p_0(J^P = 0^+)$	0^+ assumed Exp. $p_0(J^P = 2^+)$	Obs. $p_0(J^P = 0^+)$	Obs. $p_0(J^P = 2^+)$	$\operatorname{CL}_{\mathrm{s}}(J^P = 2^+)$
	100%	$3.0 \cdot 10^{-3}$	$8.8 \cdot 10^{-5}$	0.81	$1.6 \cdot 10^{-6}$	$0.8 \cdot 10^{-5}$
	75%	$9.5 \cdot 10^{-3}$	$8.8 \cdot 10^{-4}$	0.81	$3.2 \cdot 10^{-5}$	$1.7 \cdot 10^{-4}$
	50%	$1.3 \cdot 10^{-2}$	$2.7 \cdot 10^{-3}$	0.84	$8.6 \cdot 10^{-5}$	$5.3 \cdot 10^{-4}$
X	25%	$6.4 \cdot 10^{-3}$	$2.1 \cdot 10^{-3}$	0.80	$0.9 \cdot 10^{-4}$	$4.6 \cdot 10^{-4}$
2	0%	$2.1 \cdot 10^{-3}$	$5.5 \cdot 10^{-4}$	0.63	$1.5 \cdot 10^{-4}$	$4.2 \cdot 10^{-4}$

G. Ortona INFN & University of Torino

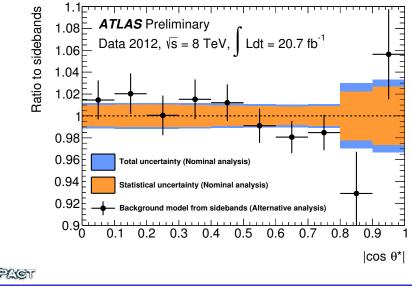

Frontiers in Particle Physics: From Dark Matter to the LHC and Beyond, 18-24 January 2014, Aspen (USA)

Measurement of spin and parity of Higgs boson


2014-01-20 23 / 23

Results, combination and conclusions

$H \rightarrow ZZ \rightarrow 4/$ Kinematics


- Two pairs of OS/SF leptons. Z₁ closest to the Z mass, Z₂ the remaining with highest p_t
- $40 < m_{Z_1} < 120 {
 m GeV}$ $12 < m_{Z_2} < 120 {
 m GeV}$
- One lepton with $p_t > 20$ GeV/c, another with $p_t > 10$ GeV/c.
- $m_{4l} > 100$ GeV, any $m_{l^+l^-} > 4$ GeV

G. Ortona INFN & University of Torino

Results, combination and conclusions

$\gamma\gamma$ residual correlation

G. Ortona INFN & University of Torino